Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Management
2.2. Sample Collection and Handling
2.3. Fatty Acid Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Velthof, G.L.; Lesschen, J.P.; Schils, R.L.M.; Smit, A.; Elbersen, B.S.; Hazeu, G.W.; Mucher, C.A.; Oenema, O. Grassland Areas, Production and Use. Lot 2: Methodological Studies in the Field of Agro-Environmental Indicators; Alterra Wageningen UR: Wageningen, The Netherlands, 2014. [Google Scholar]
- EUROSTAT Permanent Grassland: Number of Farms and Areas by Agricultural Size of Farm (UAA) and Size of Permanent Grassland Area-Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/ef_pograss (accessed on 17 June 2020).
- Zayed, Y.; Loft, P. Agriculture: Historical Statistics; The House of Commons Library: London, UK, 2019; p. 19. [Google Scholar]
- Burgon, A.; Bondesen, O.B.; Verburgt, W.H.; Hall, A.G.; Bark, N.S.; Robinson, M.; Timm, G. The forage seed trade. In Forage Seed Production. Temperate Species; Fairey, D.T., Hampton, J.G., Eds.; CAB International: Wallingford, UK, 1997; Volume 1, pp. 271–286. ISBN 978-0-85199-190-0. [Google Scholar]
- Chapman, D.F.; Bryant, J.R.; Kerr, G.A.; Judson, G.; Cookson, T.; Edwards, R.; McMillan, W.H. Economic Values for Perennial Ryegrass Traits in New Zealand Dairy Farm Systems. In Revitalising Grasslands to Sustain Our Communities, Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 2013; Michalk, D.L., Millar, G.D., Badgery, W.B., Broadfoot, K.M., Eds.; New South Wales Department of Primary Industry: Sydney, Australia; pp. 822–823.
- Smit, H.J.; Tas, B.M.; Taweel, H.Z.; Elgersma, A. Sward characteristics important for intake in six Lolium perenne varieties. Grass Forage Sci. 2005, 60, 128–135. [Google Scholar] [CrossRef]
- Ullmann, I.; Herrmann, A.; Hasler, M.; Taube, F. Influence of the critical phase of stem elongation on yield and forage quality of perennial ryegrass genotypes in the first reproductive growth. Field Crop. Res. 2017, 205, 23–33. [Google Scholar] [CrossRef]
- Moorby, J.M.; Kingston-Smith, A.H.; Abberton, M.T.; Humphreys, M.O.; Theodorou, M.K. Improvement of Forages to Increase the Efficiency of Nitrogen and Energy Use by Ruminants, Proceedings of the 42nd University of Nottingham Feed Conference, Nottingham, UK, 2008; Nottingham University Press: Nottingham, UK; pp. 5–7.
- Wilkins, P.W.; Humphreys, M.O. Progress in breeding perennial forage grasses for temperate agriculture. J. Agric. Sci. 2003, 140, 129–150. [Google Scholar] [CrossRef]
- Humphreys, M.O. Genetic improvement of forage crops-past, present and future. J. Agric. Sci. 2005, 143, 441–448. [Google Scholar] [CrossRef]
- Shinozuka, H.; Cogan, N.O.I.; Spangenberg, G.C.; Forster, J.W. Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet. 2012, 13, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, B.J.; Cogan, N.O.I.; Pembleton, L.W.; Goddard, M.E.; Wang, J.; Spangenberg, G.C.; Forster, J.W. Prospects for genomic selection in forage plant species. Plant Breed. 2013, 132, 133–143. [Google Scholar] [CrossRef]
- Nakaya, A.; Isobe, S.N. Will genomic selection be a practical method for plant breeding? Ann. Bot. 2012, 110, 1303–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldán-Ruiz, I.; Kölliker, R. Marker-assisted selection in forage crops and turf: A review. In Sustainable Use of Genetic Diversity in Forage and Turf Breeding; Huyghe, C., Ed.; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2010; pp. 383–390. [Google Scholar]
- Miller, L.A.; Moorby, J.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; Macrae, J.C.; Theodorou, M.K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.L.; Dijkstra, J.; France, J.; Parsons, A.J.; Edwards, G.; Rasmussen, S.; Kebreab, E.; Bannink, A. Effect of high-sugar grasses on methane emissions simulated using a dynamic model. J. Dairy Sci. 2012, 95, 272–285. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Harris, L.J.; Moorby, J.; Humphreys, M.O.; Theodorou, M.K.; Macrae, J.C.; Scollan, N.D. Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrate. Anim. Sci. 2002, 74, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef] [PubMed]
- Prache, S.; Martin, B.; Coppa, M. Review: Authentication of grass-fed meat and dairy products from cattle and sheep. Animal 2019, 14, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Morgan, S.; Huws, S.A.; Scollan, N.D. Progress in forage-based strategies to improve the fatty acid composition of beef. In Proceedings of the 24th Grassland-A European Resource, Lublin, Poland, 3–7 June 2012; Volume 17, pp. 295–307. [Google Scholar]
- Scollan, N.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017, 76, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, B.A.; Faville, M.J.; Nichols, S.; Simpson, W.R.; Bryan, G.T.; Conner, A.J. Breaking through the feed barrier: Options for improving forage genetics. Anim. Prod. Sci. 2015, 55, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Winichayakul, S.; Cookson, R.; Scott, R.; Zhou, J.; Zou, X.; Roldan, M.; Richardson, K.; Roberts, N. Delivery of grasses with high levels of unsaturated, protected fatty acids. Proc. N. Z. Grassl. Assoc. 2008, 70, 211–216. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Rivero, M.J.; Cone, J.W. The role of pasture in the diet of ruminant livestock. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; pp. 31–54. [Google Scholar]
- Foskolos, A.; Moorby, J. The use of high sugar grasses as a strategy to improve nitrogen utilization efficiency: A meta-analysis. Adv. Anim. Biosci. 2017, 8, 72. [Google Scholar]
- Staerfl, S.M.; Zeitz, J.O.; Amelchanka, S.L.; Kälber, T.; Kreuzer, M.; Leiber, F. Comparison of the milk fatty acid composition from dairy cows fed high-sugar ryegrass, low-sugar ryegrass, or maize. Dairy Sci. Technol. 2013, 93, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.J.; Edwards, G.; Newton, P.; Chapman, D.F.; Caradus, J.R.; Rasmussen, S.; Rowarth, J.S. Past lessons and future prospects: Plant breeding for yield and persistence in cool-temperate pastures. Grass Forage Sci. 2011, 66, 153–172. [Google Scholar] [CrossRef]
- Vanhercke, T.; El Tahchy, A.; Liu, Q.; Zhou, X.-R.; Shrestha, P.; Divi, U.K.; Ral, J.-P.; Mansour, M.P.; Nichols, P.D.; James, C.N.; et al. Metabolic engineering of biomass for high energy density: Oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 2013, 12, 231–239. [Google Scholar] [CrossRef]
- Winichayakul, S.; Scott, R.W.; Roldan, M.; Hatier, J.-H.B.; Livingston, S.; Cookson, R.; Curran, A.C.; Roberts, N.J. In Vivo packaging of triacylglycerols enhances arabidopsis leaf biomass and energy density. Plant Physiol. 2013, 162, 626–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewhurst, R.J.; Scollan, N.D.; Youell, S.J.; Tweed, J.K.S.; Humphreys, M.O. Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass Forage Sci. 2001, 56, 68–74. [Google Scholar] [CrossRef]
- Palladino, R.A.; O’Donovan, M.; Kennedy, E.; Murphy, J.J.; Boland, T.M.; Kenny, D.A. Fatty acid composition and nutritive value of twelve cultivars of perennial ryegrass. Grass Forage Sci. 2009, 64, 219–226. [Google Scholar] [CrossRef]
- Morgan, S.A.; Huws, S.A.; Lister, S.J.; Sanderson, R.; Scollan, N. Phenotypic variation and relationships between fatty acid concentrations and feed value of perennial ryegrass genotypes from a breeding population. Agronomy 2020, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, M.; Yadav, R.S.; Lee, M.R.F.; Armstead, I.; Sanderson, R.; Scollan, N.; Powell, W.; Skøt, L. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol. J. 2013, 11, 572–581. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed. Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Moorby, J.; Scollan, N.D.; Tweed, J.K.S.; Humphreys, M.O. Effects of a stay-green trait on the concentrations and stability of fatty acids in perennial ryegrass. Grass Forage Sci. 2002, 57, 360–366. [Google Scholar] [CrossRef]
- Gilliland, T.J.; Barrett, P.D.; Mann, R.L.; Agnew, R.E.; Fearon, A.M. Canopy morphology and nutritional quality traits as potential grazing value indicators for Lolium perenne varieties. J. Agric. Sci. 2002, 139, 257–273. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaud, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- Elgersma, A.; Ellen, G.; Horst, H.; Muuse, B.G.; Boer, H.; Tamminga, S. Influence of cultivar and cutting date on the fatty acid composition of perennial ryegrass (Lolium perenne L.). Grass Forage Sci. 2003, 58, 323–331. [Google Scholar] [CrossRef]
- Van Ranst, G.; Fievez, V.; Vandewalle, M.; De Riek, J.; Van Bockstaele, E. Influence of herbage species, cultivar and cutting date on fatty acid composition of herbage and lipid metabolism during ensiling. Grass Forage Sci. 2009, 64, 196–207. [Google Scholar] [CrossRef]
- Hawke, J.C. Lipids. In Chemistry and Biochemistry of Herbage; Butlerand, G.W., Bailey, R.W., Eds.; Acedemic Press: London, UK, 1973; pp. 213–263. [Google Scholar]
- Elgersma, A.; Ellen, G.; Van Der Horst, H.; Muuse, B.; Boer, H.; Tamminga, S. Comparison of the fatty acid composition of fresh and ensiled perennial ryegrass (Lolium perenne L.), affected by cultivar and regrowth interval. Anim. Feed. Sci. Technol. 2003, 108, 191–205. [Google Scholar] [CrossRef]
- Bélanger, G.; McQueen, R.E. Digestibility and cell wall concentration of early- and late-maturing timothy (Phleum pratense L.) cultivars. Can. J. Plant. Sci. 1996, 76, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Elgersma, A.; Maudet, P.; Witkowska, I.; Wever, A. Effects of Nitrogen fertilisation and regrowth period on fatty acid concentrations in perennial ryegrass (Lolium perenne L.). Ann. Appl. Biol. 2005, 147, 145–152. [Google Scholar] [CrossRef]
- Witkowska, I.; Wever, C.; Gort, G.; Elgersma, A. Effects of Nitrogen rate and regrowth interval on perennial ryegrass fatty acid content during the growing season. Agron. J. 2008, 100, 1371–1379. [Google Scholar] [CrossRef]
- Singh, S.P.; Tomar, B.S. Cell Biology, 9th ed.; Rastogi Publications: Meerut, India, 2007; ISBN 978-81-7133-909-9. [Google Scholar]
- Bauchart, D.; Verite, R.; Remond, B. Long-chain fatty acid digestion in lactating cows fed fresh grass from spring to autumn. Can. J. Anim. Sci. 1984, 64, 330–331. [Google Scholar] [CrossRef]
- Cabiddu, A.; Wencelová, M.; Bomboi, G.; DeCandia, M.; Molle, G.; Salis, L. Fatty acid profile in two berseem clover (Trifolium alexandrinum L.) cultivars: Preliminary study of the effect of part of plant and phenological stage. Grassl. Sci. 2017, 63, 101–110. [Google Scholar] [CrossRef]
- García, P.T.; Pordomingo, A.; Pérez, C.D.; Rios, M.D.; Sancho, A.M.; Lagreca, G.V.; Casal, J.J. Influence of cultivar and cutting date on the fatty acid composition of forage crops for grazing beef production in Argentina. Grass Forage Sci. 2015, 71, 235–244. [Google Scholar] [CrossRef]
- Quartacci, M.F.; Pinzino, C.; Sgherri, C.; Navari-Izzo, F. Lipid composition and protein dynamics in thylakoids of two wheat cultivars differently sensitive to drought. Plant. Physiol. 1995, 108, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Repellin, A.; Thi, A.; Tashakorie, A.; Sahsah, Y.; Daniel, C.; Zuily-Fodil, Y. Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L.). Eur. J. Agron. 1997, 6, 25–33. [Google Scholar] [CrossRef]
- Hubac, C.; Guerrier, D.; Ferran, J.; Tremolieres, A. Change of leaf lipid composition during water stress in two genotypes of Lupinus albus resistant or susceptible to drought. Plant. Physiol. Biochem. Fr. 1989, 27, 737–744. [Google Scholar]
- Ferrari-Iliou, R.; Thi, A.T.P.; Silva, J.V. Effect of water stress on the lipid and fatty acid composition of cotton (Gossypium hirsutum) chloroplasts. Physiol. Plant. 1984, 62, 219–224. [Google Scholar] [CrossRef]
- Dakhma, W.S.; Zarrouk, M.; Cherif, A. Effects of drought-stress on lipids in rape leaves. Phytochemistry 1995, 40, 1383–1386. [Google Scholar] [CrossRef]
- Xu, L.; Han, L.; Huang, B. Membrane Fatty Acid Composition and Saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass. Crop. Sci. 2011, 51, 273–281. [Google Scholar] [CrossRef]
- Baldin, M.; Rico, D.; Green, M.; Harvatine, K. Technical note: An in vivo method to determine kinetics of unsaturated fatty acid biohydrogenation in the rumen. J. Dairy Sci. 2018, 101, 4259–4267. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef]
- Gebreyowhans, S.; Zhang, S.; Pang, X.; Lu, J.; Lv, J. Dietary enrichment of milk and dairy products with n-3 fatty acids: A review. Int. Dairy J. 2019, 97, 158–166. [Google Scholar] [CrossRef]
- Bolton, P.; Harwood, J.L. Fatty acid synthesis by slices from developing leaves. Planta 1978, 138, 223–228. [Google Scholar] [CrossRef]
- Bolton, P.; Harwood, J.L. Lipid metabolism in green leaves of developing monocotyledons. Planta 1978, 139, 267–272. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, S.A.; Huws, S.A.; Scollan, N.D. Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population. Agronomy 2020, 10, 1517. https://doi.org/10.3390/agronomy10101517
Morgan SA, Huws SA, Scollan ND. Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population. Agronomy. 2020; 10(10):1517. https://doi.org/10.3390/agronomy10101517
Chicago/Turabian StyleMorgan, Sarah A., Sharon A. Huws, and Nigel D. Scollan. 2020. "Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population" Agronomy 10, no. 10: 1517. https://doi.org/10.3390/agronomy10101517
APA StyleMorgan, S. A., Huws, S. A., & Scollan, N. D. (2020). Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population. Agronomy, 10(10), 1517. https://doi.org/10.3390/agronomy10101517