Evaluation and Development of Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity for Mexican Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedotransfer Functions in Literature
2.2. Soil Data Base
2.3. Statistical Analysis
3. Results and Discussions
3.1. Laboratory Results
3.2. Saturated Hydraulic Conductivity Obtained with Existing Models
3.3. Principal Component Analysis
3.4. Development of New Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuentes, S.; Trejo-Alonso, J.; Quevedo, A.; Fuentes, C.; Chávez, C. Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation. Mathematics 2020, 8, 1581. [Google Scholar] [CrossRef]
- Chávez, C.; Fuentes, C. Design and evaluation of surface irrigation systems applying an analytical formula in the irrigation district 085, La Begoña, Mexico. Agric. Water Manag. 2019, 221, 279–285. [Google Scholar] [CrossRef]
- Di, W.; Xue, J.; Bo, X.; Meng, W.; Wu, Y.; Du, T. Simulation of irrigation uniformity and optimization of irrigation technical parameters based on the SIRMOD model under alternate furrow irrigation. Irrig. Drain. 2017, 66, 478–491. [Google Scholar]
- Gillies, M.H.; Smith, R.J. SISCO: Surface irrigation simulation, calibration and optimization. Irrig. Sci. 2015, 33, 339–355. [Google Scholar] [CrossRef]
- Saucedo, H.; Zavala, M.; Fuentes, C. Complete hydrodynamic model for border irrigation. Water Technol. Sci. 2011, 2, 23–38. [Google Scholar]
- Weibo, N.; Ma, X.; Fei, L. Evaluation of infiltration models and variability of soil infiltration properties at multiple scales. Irrig. Drain. 2017, 66, 589–599. [Google Scholar]
- Zhang, Y.; Schaap, M.G. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. J. Hydrol. 2019, 575, 1011–1030. [Google Scholar] [CrossRef]
- Abdelbaki, A.M. Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Eng. J. 2018, 9, 1611–1619. [Google Scholar] [CrossRef]
- Brakensiek, D.; Rawls, W.J.; Stephenson, G.R. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE 1984. Paper No. PNR-84203. [Google Scholar]
- Rasoulzadeh, A. Estimating Hydraulic Conductivity Using Pedotransfer Functions. In Hydraulic Conductivity-Issues, Determination and Applications; Elango, L., Ed.; InTech: Rijeka, Croatia, 2011; pp. 145–164. [Google Scholar]
- Vereecken, H.; Maes, J.; Feyen, J. Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci. 1990, 149, 1–12. [Google Scholar] [CrossRef]
- Ferrer-Julià, M.; Estrela-Monreal, T.; Sánchez-del Corral-Jiménez, A.; García-Meléndez, E. Constructing a saturated hydraulic conductivity map of spain using pedotransfer functions and spatial prediction. Geoderma 2004, 123, 275–277. [Google Scholar] [CrossRef]
- Moreira, L.; Righetto, A.M.; Medeiros, V.M. Soil hydraulics properties estimation by using pedotransfer functions in a northeastern semiarid zone catchment, Brazil. International Environmental Modelling and Software Society, 2004, Osnabrueck. Complexity and Integrated Resources Management. In Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, iEMSs 2004; International Environmental Modelling and Software Society: Manno, Switzerland, 2004; Volume 2, pp. 990–995. [Google Scholar]
- Kaur, R.; Kumar, S.; Gurung, H. A pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Aust. J. Soil Res. 2002, 40, 847–857. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 6 July 2020).
- Bates, D.M.; Chambers, J.M. Statistical Models in S. In Nonlinear Models; Chambers, J.M., Hastie, T.J., Eds.; CRC Press: Boca Raton, FL, USA, 1992; pp. 421–453. [Google Scholar]
- Cosby, B.; Hornberger, G.; Clapp, R.; Ginn, T. A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 5, 1031–1036. [Google Scholar]
- Ahuja, L.R.; Naney, J.W.; Green, R.E.; Nielsen, D.R. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci. Soc. Am. J. 1984, 48, 699–702. [Google Scholar] [CrossRef]
- Chávez, C.; Fuentes, C. Optimization of furrow irrigation by an analytical formula and its impact on reduction of the water applied. Agrociencia 2018, 52, 483–496. [Google Scholar]
- Gootman, K.S.; Kellner, E.; Hubbart, J.A. A Comparison and Validation of Saturated Hydraulic Conductivity Models. Water 2020, 12, 2040. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; p. 495. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistical and Probability for Engineers, 6th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2014; p. 811. [Google Scholar]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, vzj2015.09.0131. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.T.; Jeen, S.W.; Suleiman, A.A.; Lee, K.K. Comparison of saturated hydraulic conductivity estimated by three different methods. Water 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Chapuis, R.P. Predicting the saturated hydraulic conductivity of soils: A review. Bull. Eng. Geol. Environ. 2012, 71, 401–434. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. 2017. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 6 July 2020).
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
PTF | Formula | Reference |
---|---|---|
PTF-1 | [9] | |
PTF-2 | [17] | |
PTF-3 | [18] | |
PTF-4 | [11] | |
PTF-5 | [12] | |
PTF-6 | [19] |
Texture | No. of Samples | (%) |
---|---|---|
Clay | 22 | 2.4 |
Silty clay | 17 | 1.9 |
Sandy clay | 10 | 1.1 |
Silt | 136 | 15.1 |
Clay loam | 64 | 7.1 |
Silty clay loam | 163 | 18.1 |
Clay sandy loam | 139 | 15.5 |
Silty loam | 145 | 16.1 |
Loam | 94 | 10.5 |
Sandy loam | 110 | 12.2 |
Variable | Min | Max | Median | Mean | SD | Q1 | Q3 |
---|---|---|---|---|---|---|---|
Sand (%) | 0.07 | 77.83 | 28.35 | 31.14 | 20.22 | 13.75 | 52.00 |
Clay (%) | 2.12 | 59.46 | 21.74 | 21.95 | 12.06 | 13.44 | 30.00 |
Silt (%) | 0.80 | 92.00 | 45.27 | 46.91 | 23.48 | 27.30 | 59.79 |
Bulk density (ρa) (g cm−3) | 1.18 | 1.70 | 1.40 | 1.41 | 0.11 | 1.32 | 1.47 |
Volumetric water content (θs) (cm3 cm−3) | 0.35 | 0.56 | 0.47 | 0.47 | 0.04 | 0.45 | 0.50 |
Field Capacity (FC) (cm3 cm−3) | 0.17 | 0.47 | 0.29 | 0.30 | 0.06 | 0.25 | 0.32 |
Permanent wilting point (PWP) (cm3 cm−3) | 0.07 | 0.35 | 0.13 | 0.15 | 0.05 | 0.10 | 0.17 |
Saturated hydraulic conductivity (KS) (cm h−1) | 0.05 | 5.15 | 0.78 | 1.42 | 1.42 | 0.40 | 1.80 |
PTFs | RMSE | EF | MAE | R2 | |
---|---|---|---|---|---|
PTF-1 | 0.1370 | 0.9907 | 0.0574 | 0.1370 | 0.9953 |
PTF-2 | 0.4325 | 0.9104 | 0.2449 | 0.4325 | 0.9546 |
PTF-3 | 0.1895 | 0.9823 | 0.0823 | 0.1895 | 0.9915 |
PTF-4 | 0.7143 | 0.8434 | 0.3837 | 0.7143 | 0.9307 |
PTF-5 | 1.3018 | −2.2687 | 1.0160 | 1.3018 | 0.4083 |
PTF-6 | 0.6498 | 0.6874 | 0.5125 | 0.6498 | 0.8910 |
NPTF | MODEL | RMSE | EF | MAE | R2 | |
---|---|---|---|---|---|---|
NF-1 | 0.6888 | 0.6865 | 0.6144 | 0.6845 | 0.8709 | |
NF-2 | 0.2636 | 0.9623 | 0.1958 | 0.2636 | 0.9822 | |
NF-3 | 0.2717 | 0.9582 | 0.1871 | 0.2651 | 0.9813 | |
NF-4 | 0.1983 | 0.9788 | 0.1186 | 0.1985 | 0.9901 | |
NF-5 | 0.2738 | 0.9582 | 0.1877 | 0.2717 | 0.9813 | |
NF-6 | 0.2110 | 0.9783 | 0.1767 | 0.2473 | 0.9844 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Alonso, J.; Quevedo, A.; Fuentes, C.; Chávez, C. Evaluation and Development of Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity for Mexican Soils. Agronomy 2020, 10, 1516. https://doi.org/10.3390/agronomy10101516
Trejo-Alonso J, Quevedo A, Fuentes C, Chávez C. Evaluation and Development of Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity for Mexican Soils. Agronomy. 2020; 10(10):1516. https://doi.org/10.3390/agronomy10101516
Chicago/Turabian StyleTrejo-Alonso, Josué, Antonio Quevedo, Carlos Fuentes, and Carlos Chávez. 2020. "Evaluation and Development of Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity for Mexican Soils" Agronomy 10, no. 10: 1516. https://doi.org/10.3390/agronomy10101516
APA StyleTrejo-Alonso, J., Quevedo, A., Fuentes, C., & Chávez, C. (2020). Evaluation and Development of Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity for Mexican Soils. Agronomy, 10(10), 1516. https://doi.org/10.3390/agronomy10101516