Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Additives
2.2. Grass Materials
2.3. Silage Preparation
2.4. Experimental Design
2.5. In Vitro Gas and Methane Production
2.6. Curve Fitting and Calculations
2.7. Chemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of the Grass before Making Silage and Fermentation Quality of Grass after 60 Days of Ensiling
3.2. Total Gas and Methane Production
3.3. Fermentation Parameters and Kinetics
3.4. Fermentation End-Products
3.5. Dry Matter and Organic Matter Digestibility
4. Discussion
4.1. LAB Inoculant Improved Silage Quality of Rain-Treated Ryegrass and Fresh Ryegrass
4.2. Nutrient Digestibility
4.3. Methane Production
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Directorate-General for Climate Action (European Commission). Going Climate-Neutral by 2050; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-02079-0. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M. Silage and animal health. Nat. Toxins 1999, 7, 221–232. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Coblentz, W.K.; Muck, R.E. Effects of natural and simulated rainfall on indicators of ensilability and nutritive value for wilting alfalfa forages sampled before preservation as silage. J. Dairy Sci. 2012, 95, 6635–6653. [Google Scholar] [CrossRef] [Green Version]
- Rotz, C.A.; Davis, R.J.; Abrams, S.M. Influence of rain and crop characteristics on alfalfa damage. Trans. ASAE 1991, 34, 1583–1591. [Google Scholar] [CrossRef]
- Scarbrough, D.A.; Coblentz, W.K.; Humphry, J.B.; Coffey, K.P.; Daniel, T.C.; Sauer, T.J.; Jennings, J.A.; Turner, J.E.; Kellogg, D.W. Evaluation of dry matter loss, nutritive value, and in situ dry matter disappearance for wilting orchardgrass and bermudagrass forages damaged by simulated rainfall. Agron. J. 2005, 97, 604–614. [Google Scholar] [CrossRef]
- Kung, L.; Chen, J.H.; Creck, E.M.; Knusten, K. Effect of microbial inoculants on the nutritive value of corn silage for lactating dairy cows. J. Dairy Sci. 1993, 76, 3763–3770. [Google Scholar] [CrossRef]
- Kung, L.; Taylor, C.C., Jr.; Lynch, M.P.; Neylon, J.M. The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. J. Dairy Sci. 2003, 86, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G. Probiotics silage inoculants and animal performance. Indian J. Biotech. 2003, 2, 378–381. [Google Scholar]
- Basso, F.C.; Adesogan, A.T.; Lara, E.C.; Rabelo, C.H.; Berchielli, T.T.; Teixeira, I.A.; Siqueira, G.R.; Reis, R.A. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs. J. Anim. Sci. 2014, 92, 5640–5650. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2015, 99, 7159–7174. [Google Scholar] [CrossRef]
- Cao, Y.; Takahashi, T.; Horiguchi, K.; Yoshida, N. Effect of adding lactic acid bacteria and molasses on fermentation quality and in vitro ruminal digestion of total mixed ration silage prepared with whole crop rice. Grassl. Sci. 2010, 56, 19–25. [Google Scholar] [CrossRef]
- Cao, Y.; Takahashi, T.; Horiguchi, K.; Yoshida, N.; Cai, Y. Methane emissons from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Anim. Feed Sci. Technol. 2010, 157, 72–78. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, Y.; Takahashi, T.; Yoshida, N.; Tohno, M.; Uegaki, R. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J. Dairy Sci. 2011, 94, 3902–3912. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Mertens, D.R.; Weimer, P.J. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silage. Anim. Feed Sci. Technol. 2011, 163, 2–10. [Google Scholar] [CrossRef]
- Jeyanathan, J.; Martin, C.; Maguy, E.; Ferlay, A.; Milka, P.; Morgavi, D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Doyle, N.; Mbandlwa, P.; Kelly, W.J.; Attwood, G.; Li, Y.; Ross, R.P.; Catherine, S.; Leahy, S. Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front. Microbiol. 2019, 10, 2207. [Google Scholar] [CrossRef] [Green Version]
- Frizzo, L.S.; Zbrun, M.V.; Soto, L.P.; Signorini, M.L. Effects of probiotics on growth performance in young calves: A meta-analysis of randomized controlled trials. Anim. Feed Sci. Technol. 2011, 169, 147–156. [Google Scholar] [CrossRef]
- Krehbiel, C.R.; Rust, S.R.; Zhang, G.; Gilliland, S.E. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 2003, 81, E120–E132. [Google Scholar]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct- fed microbials for ruminant animals. Asian Australas. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Cone, J.W.; van Gelder, A.H.; Visscher, G.J.W.; Oudshoorn, L. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 1996, 61, 113–128. [Google Scholar] [CrossRef]
- Pellikaan, W.F.; Stringano, E.; Leenaars, J.; Bongers, D.J.G.M.; van Laar-van Schuppen, S.; Plant, J.; Mueller-Harvey, I. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim. Feed Sci. Technol. 2011, 166–167, 377–390. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. J. Anim. Sci. 2001, 73, 313–322. [Google Scholar] [CrossRef]
- ISO. Animal Feeding Stuffs Determination of Moisture and Other Volatile Matter Content; ISO 6496:1999; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- ISO. Animal Feeding Stuffs Determination of Crude Ash; ISO 5984:2002; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- ISO. Animal Feeding Stuffs Determination of Nitrogen Content and Calculation of Crude Protein Content Part 1. Kjeldahl Method; ISO 5983-1:2005; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Software, version 9.4; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Kim, S.C.; Adesogan, A.T. Influence of Ensiling Temperature, Simulated Rainfall, and Delayed Sealing on Fermentation Characteristics and Aerobic Stability of Corn Silage. J. Dairy Sci. 2006, 89, 3122–3132. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Filya, I. The Effect of Lactobacillus buchneri and Lactobacillus plantarum on the Fermentation, Aerobic Stability, and Ruminal Degradability of Low Dry Matter Corn and Sorghum Silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Kim, Y.J.; Li, D.X.; Gonçalves, M.C.M.; Vyas, D.; Adesogan, A.T. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [Green Version]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Heron, S.J.E.; Edwards, R.A.; Mc Donald, P. The effects of inoculation, addition of glucose and mincing on fermentation and proteolysis in ryegrass ensiled in laboratory silos. Anim. Feed Sci. Technol. 1989, 19, 85–96. [Google Scholar] [CrossRef]
- Turner, J.E.; Coblentz, W.K.; Scarbrough, D.A.; Rhein, R.T.; Cofson, K.P.; Rosenkrans, C.F.; Kellogg, J.D.W.; Skinner, J.J.V. Changes in nutritive value of tall fescue hay as affected by natural rainfall and moisture concentration at baling. Anim. Feed Sci. Technol. 2003, 109, 47–63. [Google Scholar] [CrossRef]
- Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.; Dijkstra, J. The effect of lactic acid bacteria included as a probiotic orsilage inoculant on in vitro rumen digestibility, total gas andmethane production. Anim. Feed Sci. Technol. 2016, 211, 61–74. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Shatz, O.; Chen, Y.; Yosef, E.; Nikbahat, M.; Ben-Ghedalia, D.; Miron, J. Effect of Lactic Acid Bacteria Inoculants on In Vitro Digestibility of Wheat and Corn Silages. J. Dairy Sci. 2007, 90, 4754–4762. [Google Scholar] [CrossRef] [Green Version]
- McAllister, T.A.; Feniuk, R.; Mir, Z.; Mir, P.; Selinger, L.B.; Cheng, K.J. Inoculants for alfalfa silage: Effects on aerobic stability, digestibility and the growth performance of feedlot steers. Livest. Prod. Sci. 1998, 53, 171–181. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Queiroz, O.C.; MArriola, K.G.; Daetz, R.; Basso, F.; Romero, J.J.; Adesogan, A.T. Effects of homolactic bacterial inoculant on the performance of lactating dairy cows. J. Dairy Sci. 2018, 101, 5145–5152. [Google Scholar]
- Jalc, D.; Laukova, A.; Varadyova, Z.; Homolka, P.; Koukolova, V. Effect of inoculated grass silage on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Anim. Feed Sci. Technol. 2009, 151, 55–64. [Google Scholar] [CrossRef]
- Kim, H.S.; Han, O.K.; Kim, S.C.; Kim, M.J.; Kwak, Y.S. Screening and investigation Lactobacillus spp. to improve Secale cereale silage quality. Anim. Sci. J. 2017, 88, 1538–1546. [Google Scholar] [CrossRef]
- Keady, T.W.J.; Steen, R.W.J. Effects of applying a bacterial inoculant to silage immediately before feeding on silage intake, digestibility, degradability and rumen volatile fatty acid concentrations in growing beef cattle. Grass Forage Sci. 1996, 51, 155–162. [Google Scholar] [CrossRef]
- Rabelo, C.H.S.; Basso, F.C.; Lara, E.C.; Jorge, L.G.O.; Härter, C.J.; Mari, L.J.; Reis, R.A. Effects of Lactobacillus buchneri as a silage inoculant or probiotic on in vitro organic matter digestibility, gas production, and volatile fatty acids of low dry matter whole-crop maize silage. Grass Forage Sci. 2017, 72, 524–534. [Google Scholar] [CrossRef]
- Rabelo, C.H.S.; Basso, F.C.; Lara, E.C.; Jorge, L.G.O.; Harter, C.J.H.; Mesquita, L.G.; Silva, L.F.P.R.; Reis, R.A. Effects of Lactobacillus buchneri as a silage inoculant and as a probiotic on feed intake, apparent digestibility and ruminal fermentation and microbiology in wethers fed low-dry-matter whole-crop maize silage. Grass Forage Sci. 2018, 73, 67–77. [Google Scholar] [CrossRef]
- Philippeau, C.; Lettat, A.; Martin, C.; Silberberg, M.; Morgavi, D.P.; Ferlay, A.; Berger, C.; Nozière, P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 2017, 100, 2637–2650. [Google Scholar] [CrossRef]
- Van Soest, P.J. Function of the Ruminant Forestomach. In Nutritional Ecology of the Ruminant; Van Soest, P., Ed.; Cornell University Press: Ithaca, NY, USA, 1994; pp. 230–252. [Google Scholar]
- Weinberg, Z.G.; Muck, R.E.; Weimer, P.J. The survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003, 94, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalc, D.; Varadyova, Z.; Laukova, A.; Homolka, P.; Jancik, F. Effect of inoculated corn silage on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Anim. Feed Sci. Technol. 2009, 152, 256–266. [Google Scholar] [CrossRef]
Parameters | Unit | Rain-Treated Ryegrass | Fresh Ryegrass |
---|---|---|---|
DM | g/kg of fresh material | 232.35 | 243.04 |
OM | g/kg DM | 870.30 | 885.90 |
CP | g/kg DM | 98.00 | 98.56 |
NDF | g/kg DM | 628.80 | 596.60 |
WSC | g/kg DM | 60.29 | 90.54 |
Parameters | Grass | Control | Inoculant at 106 cfu/g of Fresh Material | SEM | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Inoculant (I) | Grass | Strains | G × S × I | ||||
(G) | (S) | |||||||||||
DM loss (%) | Fresh ryegrass | 12.05 | 8.71 | 2.16 | 7.5 | 6.61 | 6.27 | 2.1545 | <0.0001 | 0.0635 | 0.1377 | 0.4725 |
Rain-treated ryegrass | 13.49 | 6.91 | 3.08 | 13.35 | 11.76 | 7.61 | ||||||
NH3 (g/kg DM) | Fresh ryegrass | 5.376 | 3.297 | 3.092 | 2.791 | 3.449 | 2.987 | 0.8413 | <0.0001 | 0.0053 | 0.9961 | 0.9933 |
Rain-treated ryegrass | 3.655 | 2.325 | 2.273 | 3.048 | 2.859 | 2.63 | ||||||
pH | Fresh ryegrass | 4.343 | 4.117 | 4.193 | 4.293 | 4.223 | 4.253 | 0.1210 | 0.0019 | <0.0001 | 0.8804 | 0.9873 |
Rain-treated ryegrass | 4.163 | 3.927 | 3.82 | 3.857 | 3.963 | 4.090 |
Parameters | Grass | Way | Strains | SEM | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Grass (G) | Strains (S) | Way (W) | G × S × W | ||||
GP (mL/g OM) | Fresh ryegrass | DFM | 325.15 | 307.02 | 329.1 | 313.68 | 323.24 | 323.34 | 9.442 | 0.2975 | 0.3599 | 0.0353 | 0.0004 |
INO | 312.48 | 287.63 | 309.02 | 289.43 | 283.58 | 276.12 | |||||||
Rain-treated ryegrass | DFM | 309.15 | 313.23 | 306.15 | 302.08 | 300.78 | 300.74 | ||||||
INO | 313.74 | 300.58 | 306.04 | 318.38 | 337.16 | 320.74 | |||||||
GPCH4 | Fresh ryegrass | DFM | 65.55 | 64.17 | 62.72 | 64.24 | 62.87 | 64.16 | 1.707 | 0.0016 | 0.0621 | 0.0027 | <0.0001 |
INO | 63.94 | 56.85 | 61.02 | 57.54 | 54.5 | 55.33 | |||||||
(mL/g OM) | Rain-treated ryegrass | DFM | 65.02 | 62.13 | 62.7 | 64.26 | 61.18 | 60.09 | |||||
INO | 62.7 | 59.75 | 62.17 | 66.35 | 66.8 | 66.63 | |||||||
CH4% | Fresh ryegrass | DFM | 20.18 | 20.96 | 19.07 | 20.73 | 19.48 | 19.87 | 0.508 | 0.0301 | 0.1428 | 0.3281 | 0.4636 |
INO | 20.56 | 19.87 | 19.79 | 19.92 | 19.32 | 20.14 | |||||||
(% of GP) | Rain-treated ryegrass | DFM | 21.14 | 19.84 | 20.52 | 21.29 | 20.72 | 20.03 | |||||
INO | 20.01 | 19.88 | 20.41 | 20.88 | 19.81 | 20.81 |
Parameters | Grass | Way | Strains | SEM | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Grass (G) | Strains (S) | Way (W) | G × S × W | ||||
GP-T21/2 (h) | Fresh ryegrass | DFM | 13.52 | 12.19 | 13.12 | 12.53 | 13.53 | 12.91 | 1.186 | 0.159 | 0.0006 | 0.3831 | <0.0001 |
INO | 14.04 | 12.57 | 16.19 | 12.52 | 11.96 | 12.43 | |||||||
Rain-treated ryegrass | DFM | 16.04 | 12.48 | 14.56 | 13.33 | 12.1 | 12.78 | ||||||
INO | 14.03 | 11.18 | 12.24 | 12.48 | 11.98 | 22.55 | |||||||
GP-R2max (mL/g OM/h) | Fresh ryegrass | DFM | 13.3 | 13.1 | 12.53 | 13.52 | 12.87 | 13.05 | 0.504 | 0.0003 | 0.0602 | 0.0384 | 0.0312 |
INO | 12.79 | 11.83 | 12.44 | 12.68 | 11.44 | 12.24 | |||||||
Rain-treated ryegrass | DFM | 14.23 | 13.4 | 12.76 | 13.96 | 13.05 | 13.23 | ||||||
INO | 12.6 | 11.96 | 13.34 | 14.21 | 14.86 | 13.43 | |||||||
GPCH4-T1/2 (h) | Fresh ryegrass | DFM | 20.74 | 21.04 | 18.32 | 18.09 | 17.69 | 18.74 | 1.329 | 0.8196 | 0.366 | 0.0608 | 0.0388 |
INO | 18.48 | 16.54 | 18.99 | 17.28 | 17.31 | 16.43 | |||||||
Rain-treated ryegrass | DFM | 20.55 | 16.4 | 19.51 | 20.51 | 16.31 | 17.14 | ||||||
INO | 17.38 | 16.8 | 16.71 | 17.53 | 17.27 | 22.03 | |||||||
GPCH4-Rmax (mL/g OM/h) | Fresh ryegrass | DFM | 2.33 | 2.27 | 2.41 | 2.5 | 2.46 | 2.47 | 0.09 | 0.0025 | 0.6117 | 0.7467 | 0.0019 |
INO | 2.54 | 2.39 | 2.28 | 2.32 | 2.19 | 2.35 | |||||||
Rain-treated ryegrass | DFM | 2.37 | 2.6 | 2.38 | 2.35 | 2.55 | 2.43 | ||||||
INO | 2.5 | 2.45 | 2.57 | 2.73 | 2.69 | 2.26 | |||||||
RM (%/h) | Fresh ryegrass | DFM | 3.97 | 4.1 | 4.68 | 4.59 | 4.6 | 4.48 | 0.342 | 0.9068 | 0.4229 | 0.0686 | 0.1147 |
INO | 4.6 | 5.08 | 4.36 | 4.8 | 4.9 | 5.27 | |||||||
Rain-treated ryegrass | DFM | 4.04 | 4.99 | 4.48 | 4.07 | 5.08 | 4.91 | ||||||
INO | 4.64 | 4.87 | 4.91 | 4.97 | 4.87 | 3.79 |
Parameters | Grass | Way | Strains | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Grass (G) | Strains (S) | Way (W) | G × S × W | ||||
tVFA (mmol/g OM) | Fresh ryegrass | DFM | 14.87 | 14.34 | 14.65 | 14.83 | 14.78 | 14.64 | 0.325 | <0.0001 | 0.2836 | <0.0001 | <0.0001 |
INO | 14.68 | 13.97 | 13.23 | 12.99 | 12.82 | 13.23 | |||||||
Rain-treated ryegrass | DFM | 14.58 | 14.40 | 14.90 | 14.86 | 14.86 | 14.68 | ||||||
INO | 14.55 | 14.06 | 15.23 | 15.16 | 15.24 | 14.24 | |||||||
Hac (% of tVFA) | Fresh ryegrass | DFM | 60.94 | 60.17 | 60.77 | 60.63 | 60.73 | 60.58 | 0.525 | 0.0164 | 0.0906 | 0.0121 | 0.001 |
INO | 60.58 | 62.29 | 60.38 | 60.81 | 62.29 | 60.32 | |||||||
Rain-treated ryegrass | DFM | 60.55 | 60.47 | 61.63 | 61.28 | 61.35 | 61.24 | ||||||
INO | 60.92 | 62.76 | 63.63 | 61.80 | 60.46 | 60.64 | |||||||
HPr (% of tVFA) | Fresh ryegrass | DFM | 19.40 | 19.64 | 19.50 | 19.56 | 19.52 | 19.55 | 0.245 | <0.0001 | 0.8376 | 0.0406 | 0.0025 |
INO | 19.40 | 18.75 | 20.13 | 19.00 | 18.86 | 19.39 | |||||||
Rain-treated ryegrass | DFM | 19.06 | 19.08 | 18.70 | 18.92 | 18.96 | 19.00 | ||||||
INO | 18.93 | 18.81 | 18.00 | 18.84 | 19.19 | 19.10 | |||||||
HBu (% of tVFA) | Fresh ryegrass | DFM | 14.13 | 14.50 | 14.24 | 14.31 | 14.27 | 14.26 | 0.208 | 0.001 | <0.0001 | 0.0008 | <0.0001 |
INO | 14.42 | 13.45 | 13.85 | 14.56 | 13.20 | 14.66 | |||||||
Rain-treated ryegrass | DFM | 14.19 | 14.38 | 13.78 | 14.00 | 13.89 | 13.94 | ||||||
INO | 14.16 | 12.70 | 12.85 | 13.65 | 14.55 | 14.35 |
Parameters | Grass | Way | Strains | SEM | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Grass (G) | Strains (S) | Way (W) | G × S × W | ||||
HVa (% of tVFA) | Fresh ryegrass | DFM | 1.85 | 1.91 | 1.86 | 1.85 | 1.85 | 1.9 | 0.038 | 0.0006 | 0.3713 | 0.3656 | 0.1505 |
INO | 1.88 | 1.84 | 1.96 | 1.88 | 1.87 | 1.89 | |||||||
Rain-treated ryegrass | DFM | 2.05 | 2.00 | 1.95 | 1.91 | 1.91 | 1.93 | ||||||
INO | 1.98 | 1.90 | 1.84 | 1.89 | 1.91 | 1.94 | |||||||
HBc (% of tVFA) | Fresh ryegrass | DFM | 3.67 | 3.78 | 3.63 | 3.65 | 3.63 | 3.71 | 0.075 | <0.0001 | 0.0772 | 0.3127 | 0.1534 |
INO | 3.71 | 3.67 | 3.68 | 3.75 | 3.77 | 3.74 | |||||||
Rain-treated ryegrass | DFM | 4.14 | 4.07 | 3.94 | 3.89 | 3.89 | 3.89 | ||||||
INO | 4.02 | 3.83 | 3.67 | 3.81 | 3.89 | 3.97 | |||||||
NGR ratio | Fresh ryegrass | DFM | 4.08 | 4.02 | 4.06 | 4.05 | 4.06 | 4.04 | 0.089 | 0.0118 | 0.904 | 0.2663 | 0.1398 |
INO | 4.08 | 4.19 | 3.88 | 4.16 | 4.14 | 4.08 | |||||||
Rain-treated ryegrass | DFM | 4.09 | 4.11 | 4.2 | 4.16 | 4.15 | 4.13 | ||||||
INO | 4.14 | 4.12 | 4.48 | 4.15 | 4.11 | 4.11 | |||||||
NH3 (mmol/g OM) | Fresh ryegrass | DFM | 4.57 | 4.55 | 4.41 | 4.57 | 4.41 | 4.55 | 0.106 | <0.0001 | 0.0595 | <0.0001 | 0.0148 |
INO | 4.44 | 4.36 | 3.96 | 4.2 | 4.29 | 4.11 | |||||||
Rain-treated ryegrass | DFM | 4.73 | 4.67 | 4.78 | 4.78 | 4.77 | 4.66 | ||||||
INO | 4.66 | 4.39 | 4.6 | 4.87 | 4.91 | 4.54 | |||||||
pH | Fresh ryegrass | DFM | 6.447 | 6.451 | 6.453 | 6.462 | 6.451 | 6.462 | 0.009 | 0.0042 | 0.011 | 0.1433 | 0.0001 |
INO | 6.449 | 6.471 | 6.419 | 6.476 | 6.5 | 6.489 | |||||||
Rain-treated ryegrass | DFM | 6.472 | 6.467 | 6.48 | 6.483 | 6.464 | 6.469 | ||||||
INO | 6.464 | 6.474 | 6.472 | 6.486 | 6.469 | 6.461 |
Parameters | Grass | Way | Strains | SEM | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | AGR-1 | AGR-2 | AGR-3 | AGR-4 | AGR-5 | Grass (G) | Strains (S) | Way (W) | G × S × W | ||||
DM digestibility (g/kg) | Fresh ryegrass | DFM | 612.5 | 606.27 | 600.6 | 613.3 | 606.42 | 610.14 | 7.327 | <0.0001 | 0.0004 | <0.0001 | <0.0001 |
INO | 617.02 | 659.73 | 652.8 | 672.31 | 649.33 | 670.15 | |||||||
Rain-treated ryegrass | DFM | 569.23 | 559.41 | 543.35 | 551.98 | 557.66 | 554.76 | ||||||
INO | 560.06 | 619.37 | 609.24 | 596.7 | 563.99 | 564.19 | |||||||
OM digestibility (g/kg) | Fresh ryegrass | DFM | 596.9 | 590.39 | 584.41 | 598.07 | 590.85 | 593.3 | 12.655 | <0.0001 | 0.041 | <0.0001 | 0.0074 |
INO | 601.52 | 644.27 | 637.95 | 658.19 | 633.72 | 655.92 | |||||||
Rain-treated ryegrass | DFM | 559.46 | 549.27 | 572.24 | 540.72 | 546.49 | 529.67 | ||||||
INO | 549.98 | 613.09 | 600.89 | 586.84 | 551.91 | 556.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huyen, N.T.; Martinez, I.; Pellikaan, W. Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows. Agronomy 2020, 10, 1482. https://doi.org/10.3390/agronomy10101482
Huyen NT, Martinez I, Pellikaan W. Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows. Agronomy. 2020; 10(10):1482. https://doi.org/10.3390/agronomy10101482
Chicago/Turabian StyleHuyen, Nguyen Thi, Ines Martinez, and Wilbert Pellikaan. 2020. "Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows" Agronomy 10, no. 10: 1482. https://doi.org/10.3390/agronomy10101482
APA StyleHuyen, N. T., Martinez, I., & Pellikaan, W. (2020). Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows. Agronomy, 10(10), 1482. https://doi.org/10.3390/agronomy10101482