Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments
Abstract
:1. Introduction
2. Materials and Methods
Description of Field Trial Sites
3. Description of the AquaCrop Model
3.1. Crop Response to Soil Salinity Stress
3.2. Soil Salinity Calculation
4. Model Calibration
4.1. Input and Output Variables of the Model
4.2. Statistical Parameters Used for the Calibration and Evaluation of Model
4.3. Parameters Used for Model Calibration
4.4. Development of Different Scenarios
4.5. The Economic Gain from the Use of a Unit of Water Consumed in the Tow Barley Varieties under Different Climatic Conditions
5. Results
5.1. Biophysical Environments Variability of Experimental Sites
5.2. Biomass, Grain Yield, and Water Use Efficiency
5.3. Canopy Cover (CC)
5.4. Effects of Soil Salinity
5.5. Statistical Indices for AquaCrop Model Evaluation
6. Development of Different Scenarios
7. Economic Productivity of Barley Varieties under Different Climatic Conditions
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abi Saab, M.T.; Albrizio, R.; Nangia, V.; Karam, F.; Rouphael, Y. Developing scenarios to assess sunflower and soybean yield under different sowing dates and water regimes in the Bekaa valley (Lebanon): Simulations with Aquacrop. Int. J. Plant Prod. 2014, 8, 457–482. [Google Scholar]
- Ahmed, M.; Goyal, M.; Asif, M. Silicon the non-essential beneficial plant nutrient to enhanced drought tolereance in wheat. In Crop Plant; Goyal, A., Ed.; Intech Publication House: London, UK, 2012; pp. 31–48. [Google Scholar]
- Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.E.; Barati, M.A.; Rahnama, A. Validation and testing of the AquaCrop model under fulland deficit irrigated wheat production in Iran. Agric. Water Manag. 2011, 100, 1–8. [Google Scholar] [CrossRef]
- Araya, A.; Habtub, S.; Hadguc, K.; Kebedea, A.; Dejened, T. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agric. Water Manag. 2010, 97, 1838–1846. [Google Scholar] [CrossRef]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. Simulating yield response to water of Tef (Eragrostistef) with FAO’s AquaCrop model. Field Crop. Res. 2010, 116, 1996–2204. [Google Scholar] [CrossRef]
- Chauhdarya, J.N.; Bakhsh, A.; Ragab, R.; Khaliq, A.; Bernard, A.; Engeld, M.R.; Shahid, M.N.; Nawaz, Q. Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions. Agric. Water Manag. 2020, 230, 105952. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Advances in the Assessment and Mmonitoring of Salinization and Status of Biosaline Agriculture; FAO: Rome, Italy, 2010. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Johnson, P.; Ryan, P.R. Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol. Breed. 2012, 29, 427–436. [Google Scholar] [CrossRef]
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; RevoredoGiha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Zhang, H.; Han, B.; Wang, T.; Chen, S.; Li, H.; Zhang, Y.; Dai, S. Mechanisms of Plant Salt Response: Insights from Proteomics. J. Proteome Res. 2012, 11, 49–67. [Google Scholar] [CrossRef]
- Negrao, S.; Schmockel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Gupta, S.K.; Isaac, R.K. Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modelling with SWAP. Agric. Water Manag. 2012, 115, 186–193. [Google Scholar] [CrossRef]
- Soothar, R.K.; Wenying, Z.; Yanqing, Z.; Moussa, T.; Uris, M.; Wang, Y. Evaluating the performance of SALTMED model under alternate irrigation using saline and fresh water strategies to winter wheat in the North China Plain. Environ. Sci. Pollut. Res. 2019, 26, 34499–34509. [Google Scholar] [CrossRef] [PubMed]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water. I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Van Gaelen, H. AquaCrop Training Handbooks–Book II Running AquaCrop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No. 33; FAO: Rome, Italy, 1979. [Google Scholar]
- Kumar, A.; Sarangi, D.K.; Singh, R.; Parihar, S.S. Evaluation of aquacrop model in predicting wheat yield and water productivity under irrigated saline regimes. Irrig. Drain. 2014, 63, 474–487. [Google Scholar] [CrossRef]
- Mondal, M.S.; Fazal, M.A.; Saleh, M.D.; Akanda, A.R.; Biswas, S.K.; Moslehuddin, Z.; Sinora, Z.; Attila, N. Simulating yield response of rice to salinity stress with the AquaCrop model. Environ. Sci. Process. Impacts 2015, 17, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- El Mokh, F.; Nagaz, K.; Masmoudi, M.M.; Mechlia, N.B.; Fereres, E. Calibration of AquaCrop Salinity Stress Parameters for Barley under Different Irrigation Regimes in a Dry Environment; Springer: Cham, Germany, 2017. [Google Scholar] [CrossRef]
- Hellal, F.; Mansour, H.; Mohamed, A.H.; El-Sayed, S.; Abdelly, C. Assessment water productivity of barley varieties under water stress by AquaCrop model. AIMS Agric. Food 2019, 4, 501–517. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Zhang, J.; Chen, Y.; Shan, Y.; Xu, D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agric. Water Manag. 2018, 196, 99–113. [Google Scholar] [CrossRef]
- Hammami, Z.; Gauffreteau, A.; BelhajFraj, M.; Sahlia, A.; Jeuffroy, M.H.; Rezgui, S.; Bergaoui, K.; McDonnell, R.; Trifa, Y. Predicting yield reduction in improved barley (Hordeum vulgare L.) varieties and landraces under salinity using selected tolerance traits. Field Crop. Res. 2017, 211, 10–18. [Google Scholar] [CrossRef]
- Sbei, H.; Sato, K.; Shehzad, T.; Harrabi, M.; Okuno, K. Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. Breed. Sci. 2014, 64, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaradat, A.A.; Shahid, M.; Al-Maskri, A.Y. Genetic diversity in the Batini barley landrace from Oman: Spike and seed quantitative and qualitative traits. Crop. Sci. 2014, 44, 304–315. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Crop Water Productivity. Calculation Procedures and Calibration Guidance. AquaCrop Version 3.0. FAO; Land and Water Development Division: Rome, Italy, 2009. [Google Scholar]
- Trombetta, A.; Iacobellis, V.; Tarantino, E.; Gentile, F. Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag. 2015, 164. [Google Scholar] [CrossRef]
- Hanks, R.J. Yield and water-use relationships. In Limitations to Efficient Water Use in Crop Production; Taylor, H.M., Jordan, W.R., Sinclair, T.R., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 1983; pp. 393–411. [Google Scholar]
- Tanner, C.B.; Sinclair, T.R. Efficient water use in crop production: Research or re-search? In Limitations to Efficient Water Use in Crop Production; Taylor, H.M., Jordan, W.R., Sinclair, T.R., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 1983; pp. 1–27. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop Version 5.0 Reference Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Minhas, P.S.; Tiago, B.; AlonBen-Gal, R.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing SIMDualKc and AquaCrop models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Rio, S. Evaluation of FAO Aquacrop model for winter wheat on the North China plain under deficit from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ghahraman, B.; Davary, K.; Ansari, H.; Shahidi, A.; Bannayan, M. Nested validation of AquaCrop model for simulation of winter wheat grain yield soil moisture and salinity profiles under simultaneous salinity and water stress. Irrig. Drain. 2016, 65, 112–128. [Google Scholar] [CrossRef]
- Hatfield, J.L. Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids. Agric. Environ. Lett. 2016, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Roja-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO model to simulate yield response to water: Parametrization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Wiegmanna, M.; William, T.B.; Thomasb, H.J.; Bullb, I.; Andrew, J.; Flavellc, J.; Annette, Z.; Edgar, P.; Klaus, P.; Andreas, M. Wild barley serves as a source for biofortification of barley grains. Plant Sci. 2019, 283, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.P.; Mattoo, A.K. Sustainable agriculture—Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.R.; Moghadam, M.M.; Sepaskhah, A.R. Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agric. Water Manag. 2015, 161, 136–146. [Google Scholar] [CrossRef]
- Eisenhauer, J.G. Regression through the origin. Teach. Stat. 2003, 25, 76–80. [Google Scholar] [CrossRef]
- Teixeira, A.D.C.; Bassoi, L.H. HBassoi Crop Water Productivity in Semi-arid Regions: From Field to Large Scales. Ann. Arid Zone 2009, 48, 1–13. [Google Scholar]
- FAO. The Irrigation Challenge. In Increasing Irrigation Contribution To Food Security through Higher Water Productivity from Canal Irrigation Systems; Issue paper; FAO: Rome, Italy, 2003. [Google Scholar]
- Barnston, A. Correspondence among the Correlation [root mean square error] and Heidke Verification Measures; Refinement of the Heidke Score. Notes Corresp. Clim. Anal. Cent. 1992, 7, 699–709. [Google Scholar]
Growing Season | Rainfall (mm) | Irrigation Water Applied (mm) | ETo (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Sites | Sites | Sites | |||||||
Beja | KAI | MED | Beja | KAI | MED | Beja | KAI | MED | |
2012–2013 | 472.2 | 151.9 | 81.1 | 0 | 360 | 455 | 393.8 | 364.7 | 327.6 |
2013–2014 | 413.5 | 180.0 | 156.1 | 0 | 360 | 405 | 390.1 | 363.7 | 328.4 |
Site | Sand (%) | Clay (%) | Silt (%) | OM (%) | Na+ Content (ppm) | K+ Content (ppm) | Ca2+ Content (ppm) | PWP (% vol) | FC (% vol) |
---|---|---|---|---|---|---|---|---|---|
Beja | 15.0 | 57.5 | 27.5 | 4.7 | 10–20 | 250–300 | 100–110 | 32.0 | 50.0 |
KAI | 14.8 | 45.1 | 40.1 | 4.0 | 230–270 | 390–550 | 90–140 | 23.0 | 39.0 |
MED | 55.5 | 20.5 | 24.0 | 0.9 | 120–200 | 30–70 | 30–55 | 6.0 | 13.0 |
Climate | - Daily rainfall, daily ETo, daily temperatures | |
- CO2 concentration | ||
Crop | Limited set | Crop development and production parameters which include phenology and life cycle |
Crop parameters | - Harvest index | |
- Root zone threshold at the end of the canopy expansion | ||
- Threshold root zone depletion for early senescence | ||
- Time for the maximum canopy cover | ||
- Maximum vegetation | ||
- Flowering time | ||
- Initial vegetative cover | ||
- Depletion threshold root zone for stomata closure | ||
- Extraction of water | ||
Field | - Soil fertility, mulch | |
- Field practices (surface runoff presence, ground bond) | ||
Soil | Soil profile | Characteristics of soil horizon (no of soil horizon, thickness, Permanent Wilting Point (PWP), Field Capacity (FC), Soil saturation (SAT), Ksat); soil surface (runoff, evaporation); Restrictive soil layer capillary rise). |
Soil water and groundwater | Constant depth; variable depth; water quality. |
Batini-100/1 B (Salt-Tolerant) | Konouz (Salt-Sensitive) | Remarks | ||||||
---|---|---|---|---|---|---|---|---|
BEJ | KAI | MED | BEJ | KAI | MED | |||
Base temperature (°C) | S1 | 0 | 0 | 0 | 0 | 0 | 0 | Conservative |
S2 | - | 0 | 0 | - | 0 | 0 | ||
Upper temperature (°C) | S1 | 30 | 30 | 30 | 30 | 30 | 30 | Conservative |
S2 | - | 30 | 30 | - | 30 | 30 | ||
Initial canopy cover, CC0 (%) | S1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | Conservative |
S2 | - | 1.5 | 1.5 | - | 1.5 | 1.5 | ||
Canopy cover per seeding (cm2/plant) | S1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | Conservative |
S2 | - | 0.75 | 0.75 | - | 0.75 | 0.75 | ||
Maximum coefficient for transpiration, KcTr, x | S1 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | Conservative |
S2 | - | 0.90 | 0.90 | - | 0.90 | 0.90 | ||
Maximum coefficient for soil evaporation, Kex | S1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | Conservative |
S2 | - | 0.4 | 0.4 | - | 0.4 | 0.4 | ||
Upper threshold for canopy expansion, Pexp, upper | S1 | 0.30 | 0.30 | 0.30 | 0.20 | 0.20 | 0.20 | Varietal effect |
S2 | - | 0.30 | 0.30 | - | 0.20 | 0.20 | ||
Lower threshold for canopy expansion, Pexp, lower | S1 | 0.65 | 0.65 | 0.65 | 0.55 | 0.55 | 0.55 | Varietal effect |
S2 | - | 0.65 | 0.65 | - | 0.55 | 0.55 | ||
Leaf expansion stress coefficient curve shape | S1 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | Conservative |
S2 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | ||
Upper threshold for stomatal closure, Psto, upper | S1 | 0.6 | 0.6 | 0.6 | 0.55 | 0.55 | 0.55 | Varietal effect |
S2 | - | 0.6 | 0.6 | - | 0.55 | 0.55 | ||
Leaf expansion stress coefficient curve shape | S1 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | Conservative |
S2 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | ||
Canopy senescence stress coefficient, Psen, upper | S1 | 0.65 | 0.65 | 0.65 | 0.55 | 0.45 | 0.45 | Varietal effect and site effect for the sensitive |
S2 | - | 0.65 | 0.65 | - | 0.45 | 0.45 | ||
Senescence stress coefficient curve shape | S1 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | Conservative |
S2 | 4.5 | 4.5 | 4.5 | - | 4.5 | 4.5 | ||
Reference harvest index, HI0 (%) | S1 | 40 | 40 | 41 | 41 | 42 | 45 | Varietal and salt stress effect |
S2 | 40 | 45 | 41 | 41 | ||||
Normalized crop water productivity, WP* (g/m2) | S1 | 14 | 14 | 14 | 14 | 14 | 14 | Conservative |
S2 | 14 | 14 | 14 | 14 | 14 | 14 | ||
Time from sowing to emergence (day) | S1 | 7 | 7 | 7 | 7 | 7 | 7 | Conservative |
S2 | 7 | 7 | 7 | 7 | 7 | 7 | ||
Time from sowing to maximum CC (jours) | S1 | 60 | 60 | 60 | 62 | 60 | 57 | Varietal and salt stress effect |
S2 | - | 60 | 58 | - | 59 | 55 | ||
Time from sowing to maximum CC (day) | S1 | 145 | 145 | 145 | 145 | 145 | 145 | Conservative |
S2 | - | 145 | 145 | 145 | 145 | 145 | ||
Time from sowing to maturity (day) | S1 | 178 | 157 | 157 | 178 | 157 | 157 | Varietal and salt stress effect |
S2 | - | 157 | 157 | - | 157 | 157 | ||
Maximum canopy cover, CCx (%) | S1 | 87 | 87 | 87 | 87 | 75 | 63 | Varietal and salt stress effect |
S2 | - | 87 | 70 | - | 60 | 40 | ||
Canopy growth coefficient, CGC (%/day) | S1 | 12.5 | 12.5 | 12.5 | 12 | 12 | 12 | Varietal effect |
S2 | 12.5 | 12.5 | 12 | 12 | ||||
Canopy decline coefficient, CDC (%/day) | S1 | 6 | 6 | 6 | 6 | 6 | 6 | Conservative |
S2 | - | 6 | 6 | - | 6 | 6 | ||
Maximum effective rooting depth, Zx (m) | S1 | 0,9 | 0.75 | 0.75 | 0,9 | 0.75 | 0.75 | Site effect |
S2 | - | 0.75 | 0.75 | - | 0.75 | 0.75 | ||
Salinity stress, lower threshold, ECen (dS m−1) | S1 | 3 | 3 | 3 | 1 | 1 | 1 | Varietal effect |
S2 | 3 | 3 | 3 | 1 | 1 | 1 | ||
Salinity stress, upper threshold, ECex (dS m−1) | S1 | 22 | 22 | 22 | 18 | 18 | 18 | Varietal effect |
S2 | 22 | 22 | 22 | 18 | 18 | 18 | ||
Shape factor for salinity stress coefficient curve | S1 | 1 | 1 | 1 | 1 | 1 | 1 | Conservative |
S2 | 1 | 1 | 1 | 1 | 1 | 1 |
Variable | RMSE | ME | R2 | |
---|---|---|---|---|
Calibration | Grain yield (t ha−1) | 0.40 | 0.89 | 0.91 |
Biomass (t ha−1) | 0.87 | 0.96 | 0.93 | |
water productivity (kg ha−1 mm−1) | 0.15 | 0.84 | 0.89 | |
Soil salinity | 0.34 | 0.91 | 0.95 | |
Canopy cover percent | 1.5 | 0.89 | 0.91 | |
Evaluation | Grain yield (t ha−1) | 0.45 | 0.87 | 0.89 |
Biomass (t ha−1) | 0.89 | 0.86 | 0.87 | |
water productivity (kg ha−1 mm−1) | 0.13 | 0.91 | 0.84 | |
Soil salinity | 1.25 | 0.91 | 0.96 | |
Canopy cover percent | 2.25 | 0.89 | 0.91 |
BEJ | KAI | MED | |||||
---|---|---|---|---|---|---|---|
Rainfed | 5 dS m−1 | 10 dS m−1 | 15 dS m−1 | 5 dS m−1 | 10 dS m−1 | 15 dS m−1 | |
Tolerant genotype | |||||||
Biomass (t ha−1) | 11.30 | 9.07 | 8.36 | 5.48 | 5.60 | 4.74 | 4.70 |
Yield (t ha−1) | 4.70 | 3.65 | 3.44 | 2.20 | 2.29 | 2.13 | 2.10 |
WP (kg m−3) | 1.73 | 1.29 | 1.19 | 0.85 | 1.25 | 1.18 | 1.00 |
Sensitive genotype | |||||||
Biomass (t ha−1) | 11.33 | 6.62 | 4.60 | 1.90 | 3.18 | 3.03 | 2.80 |
Yield (t ha−1) | 4.64 | 2.70 | 1.90 | 0.80 | 1.40 | 1.30 | 0.80 |
WP (kg m−3) | 1.65 | 1.12 | 0.85 | 0.45 | 0.74 | 0.72 | 0.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammami, Z.; Qureshi, A.S.; Sahli, A.; Gauffreteau, A.; Chamekh, Z.; Ben Azaiez, F.E.; Ayadi, S.; Trifa, Y. Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments. Agronomy 2020, 10, 1459. https://doi.org/10.3390/agronomy10101459
Hammami Z, Qureshi AS, Sahli A, Gauffreteau A, Chamekh Z, Ben Azaiez FE, Ayadi S, Trifa Y. Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments. Agronomy. 2020; 10(10):1459. https://doi.org/10.3390/agronomy10101459
Chicago/Turabian StyleHammami, Zied, Asad S. Qureshi, Ali Sahli, Arnaud Gauffreteau, Zoubeir Chamekh, Fatma Ezzahra Ben Azaiez, Sawsen Ayadi, and Youssef Trifa. 2020. "Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments" Agronomy 10, no. 10: 1459. https://doi.org/10.3390/agronomy10101459
APA StyleHammami, Z., Qureshi, A. S., Sahli, A., Gauffreteau, A., Chamekh, Z., Ben Azaiez, F. E., Ayadi, S., & Trifa, Y. (2020). Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments. Agronomy, 10(10), 1459. https://doi.org/10.3390/agronomy10101459