AI-Driven Polymeric Coatings: Strategies for Material Selection and Performance Evaluation in Structural Applications
Abstract
1. Introduction
2. Current Challenges in Conventional Coating Development
3. AI-Driven Polymeric Coatings: Material Selection
4. AI-Driven Performance Evaluation and Predictive Degradation Modeling
5. Integration of AI-Driven Coating Design with Digital Twin and Structural Health Monitoring Systems
6. Limitations and Future Works
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| FRCs | Fiber-Reinforced Composites |
| UV | Ultraviolet |
| ML | Machine Learning |
| PVDF | Polyvinylidene Fluoride |
| FTIR | Fourier Transform Infrared |
| SEM | Scanning Electron Microscopy |
| DSC | Differential Scanning Calorimetry |
| TGA | Thermogravimetric Analysis |
| VOC | Volatile Organic Compound |
| GCNs | Graph Convolutional Networks |
| MPNNs | Message-Passing Neural Networks |
| VAEs | Variational Autoencoders |
| GANs | Generative Adversarial Networks |
| MD | Molecular Dynamics |
| FE | Finite Elements |
| LCA | Lifecycle Assessment |
| PIML | Physics-Informed Machine Learning |
| XAI | Explainable Artificial Intelligence |
| EIS | Electrochemical Impedance Spectroscopy |
| AE | Acoustic Emission |
| CNNs | Convolutional Neural Networks |
| RNNs | Recurrent Neural Networks |
| LSTM | Long Short-Term Memory |
| SHM | Structural Health Monitoring |
| RUL | Remaining Useful Life |
| IoT | Internet of Things |
| DT | Digital Twin |
References
- Bierwagen, G.P. Reflections on corrosion control by organic coatings. Prog. Org. Coat. 1996, 28, 43–48. [Google Scholar] [CrossRef]
- Faccini, M.; Bautista, L.; Soldi, L.; Escobar, A.M.; Altavilla, M.; Calvet, M.; Domènech, A.; Domínguez, E. Environmentally Friendly Anticorrosive Polymeric Coatings. Appl. Sci. 2021, 11, 3446. [Google Scholar] [CrossRef]
- Kahar, N.N.M.N.; Osman, A.; Alosime, E.; Arsat, N.; Azman, N.M.; Syamsir, A.; Itam, Z.; Hamid, Z.A. The versatility of polymeric materials as self-healing agents for various types of applications: A review. Polymers 2021, 13, 1194. [Google Scholar] [CrossRef] [PubMed]
- Zvonkina, I.; Soucek, M. Inorganic–organic hybrid coatings: Common and new approaches. Curr. Opin. Chem. Eng. 2016, 11, 123–127. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Xiang, X.D.; Takeuchi, I. Combinatorial Materials Synthesis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Xu, K.; Xiao, X.; Wang, L.; Lou, M.; Wang, F.; Li, C.; Ren, H.; Wang, X.; Chang, K. Data-Driven Materials Research and Development for Functional Coatings. Adv. Sci. 2024, 11, 2405262. [Google Scholar] [CrossRef]
- Ivošević, Š.; Vastag, G.; Kovač, N.; Majerič, P.; Rudolf, R. A Nonlinear Probabilistic Pitting Corrosion Model of Ni–Ti Alloy Immersed in Shallow Seawater. Micromachines 2022, 13, 1031. [Google Scholar] [CrossRef]
- Verma, J.; Khanna, A.S. Digital Advancements in Smart Materials Design and Multifunctional Coating Manufacturing. Phys. Open 2023, 14, 100133. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning:Generative models for matter engineering. Science 2018, 361, 360–365. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Ferji, K. Basic concepts and tools of artificial intelligence in polymer science. Polym. Chem. 2025, 16, 2457–2470. [Google Scholar] [CrossRef]
- Miturska-Barańska, I.; Antosz, K. Epoxy Adhesive Materials as Protective Coatings: Strength Property Analysis Using Machine Learning Algorithms. Materials 2025, 18, 2803. [Google Scholar] [CrossRef]
- Yan, H.; Tan, J.; Chen, H.; He, T.; Zeng, D.; Zhang, L. Machine Learning-Based Prediction of Tribological Properties of Epoxy Composite Coating. Polymers 2025, 17, 282. [Google Scholar] [CrossRef]
- Habibollahi Najaf Abadi, H.; Modarres, M. Predicting System Degradation with a Guided Neural Network Approach. Sensors 2023, 23, 6346. [Google Scholar] [CrossRef]
- Li, C.; Rubín de Celis Leal, D.; Rana, S.; Gupta, S.; Sutti, A.; Greenhill, S.; Slezak, T.; Height, M.; Venkatesh, S. Rapid Bayesian Optimisation for Synthesis of Short Polymer Fiber Materials. Sci. Rep. 2017, 7, 5683. [Google Scholar] [CrossRef]
- Takasuka, S.; Ito, S.; Oikawa, S.; Harashima, Y.; Takayama, T.; Nag, A.; Wakiuchi, A.; Ando, T.; Sugawara, T.; Hatanaka, M.; et al. Bayesian Optimization of Radical Polymerization Reactions in a Flow Synthesis System. ChemRxiv 2024, 4, 2425178. [Google Scholar] [CrossRef]
- Long, T.; Pang, Q.; Deng, Y.; Pang, X.; Zhang, Y.; Yang, R.; Zhou, C. Recent Progress of Artificial Intelligence Application in Polymer Materials. Polymers 2025, 17, 1667. [Google Scholar] [CrossRef]
- Karuth, A.; Szwiec, S.; Casanola-Martin, G.M.; Khanam, A.; Safaripour, M.; Boucher, D.; Xia, W.; Webster, D.C.; Rasulev, B. Integrated machine learning, computational, and experimental investigation of compatibility in oil-modified silicone elastomer coatings. Prog. Org. Coat. 2024, 193, 108526. [Google Scholar] [CrossRef]
- Chen, W.; Ma, L.; Li, Y.; Wu, D.; Zhou, K.; Wang, J.; Chen, Z.; Guo, X.; Li, Z.; Chowwanonthapunya, T.; et al. Prediction of coating degradation based on “Environmental Factors–Physical Property–Corrosion Failure” two-stage machine learning. Mater. Degrad. 2025, 9, 67. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Yang, J.; Ma, L.; Mol, A.; Zhang, D. Machine learning assisted discovery of high-efficiency self-healing epoxy coating for corrosion protection. Mater. Degrad. 2024, 8, 11. [Google Scholar]
- Stojanovic, B.; Babic, M.; Mitrovic, S.; Vencl, A.; Miloradović, N.; Pantić, M. Tribological characteristics of aluminium hybrid composites reinforced with silicon carbide and graphite. J. Balk. Tribol. Assoc. 2013, 19, 83–96. [Google Scholar]
- Li, Z.J.; Zhang, Y.S.; Zhou, X.M. Short fiber reinforced geopolymer composites manufactured by extrusion. J. Mater. Civ. Eng. 2005, 17, 624–631. [Google Scholar] [CrossRef]
- Weiss, K.D. Paint and coatings: A mature industry in transition. Prog. Polym. Sci. 1997, 22, 203–245. [Google Scholar] [CrossRef]
- Gao, F.; Du, A.; Ma, R.; Lv, C.; Yang, H.; Fan, Y.; Zhao, X.; Wu, J.; Cao, X. Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124318. [Google Scholar]
- Song, D.; Yin, Z.; Liu, F.; Wan, H.; Gao, J.; Zhang, D.; Li, X. Effect of carbon nanotubes on the corrosion resistance of water-borne acrylic coatings. Prog. Org. Coat. 2017, 110, 182–186. [Google Scholar]
- Guo, S.-Y.; Zhang, X.; Chen, J.-Z.; Mou, B.; Shang, H.-S.; Wang, P.; Zhang, L.; Ren, J. Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr. Build. Mater. 2020, 264, 120715. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Mani, M.P. Enriched mechanical, thermal, and blood compatibility of single stage electrospun polyurethane nickel oxide nanocomposite for cardiac tissue engineering. Polym. Compos. 2018, 40, 2381–2390. [Google Scholar] [CrossRef]
- Moradllo, M.K.; Shekarchi, M.; Hoseini, M. Time-dependent performance of concrete surface coatings in tidal zone of marine environment. Constr. Build. Mater. 2012, 30, 198–205. [Google Scholar] [CrossRef]
- Peres, R.S.; Zmozinski, A.V.; Brust, F.R.; Macedo, A.J.; Armelin, E.; Alemán, C.; Ferreira, C.A. Multifunctional coatings based on silicone matrix and propolis extract. Prog. Org. Coat. 2018, 123, 223–231. [Google Scholar] [CrossRef]
- Chen, X.; Wen, S.; Feng, T.; Yuan, X. High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection. Prog. Org. Coat. 2020, 139, 105374. [Google Scholar] [CrossRef]
- Veedu, K.K.; Kalarikkal, T.P.; Jayakumar, N.; Gopalan, N.K. Anticorrosive Performance of Mangifera indica L. Leaf Extract-Based Hybrid Coating on Steel. ACS Omega 2019, 4, 10176–10184. [Google Scholar] [CrossRef] [PubMed]
- ASTM B117-19; Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D2247; Standard Practice for Testing Water Resistance of Coatings in 100% Relative Humidity. ASTM: West Conshohocken, PA, USA, 2020.
- ASTM D4541; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D2794; Standard Test Methods for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact). American Society for Testing and Materials (ASTM): Conshohocken, PA, USA, 2019.
- ASTM D4752-20; Standard Practice for Measuring MEK Resistance of Ethyl Silicate (Inorganic) Zinc-Rich Primers by Solvent Rub. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM G 154–00a; Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Johansson, M.; Glauser, T.; Jansson, A.; Hult, A.; Malmström, E.; Claesson, H. Design of coating resins by changing the macromolecular architecture: Solid and liquid coating systems. Prog. Org. Coat. 2003, 48, 194–200. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. 2012, 61, 703–723. [Google Scholar] [CrossRef]
- Senthilkumar, N.; Selvakumar, V.; Tamizharasan, T. Optimization and Performance Analysis of Uncoated and Coated Carbide Inserts during Hard Turning AISI D2 Steel Using Hybrid GRA-PCA Technique. Appl. Mech. Mater. 2016, 852, 151–159. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Wu, Z.; Mou, W.; Feng, X.; Liu, J.; Yang, X. Full-Field Deformation-Aided Compressive Failure Evaluation of Seawater Concrete Using Digital Image Correlation Technique. J. Mar. Sci. Eng. 2022, 10, 518. [Google Scholar] [CrossRef]
- Safiuddin, M. Concrete damage in field conditions and protective sealer and coating systems. Coatings 2017, 7, 90. [Google Scholar] [CrossRef]
- Sadati, S.; Arezoumandi, M.; Shekarchi, M. Long-term performance of concrete surface coatings in soil exposure of marine environments. Constr. Build. Mater. 2015, 94, 656–663. [Google Scholar] [CrossRef]
- Kim, S.; Yi, J.-H.; Hong, H.; Choi, S.I.; Kim, D.; Kim, M.O. Interfacial Bond Properties of Underwater Concrete Coated with Bisphenol A Epoxy Resins. Polymers 2023, 15, 4290. [Google Scholar] [CrossRef]
- Escobar, C.; Villarreal, M.; Caicedo, J.C.; Aperador, W.; Prieto, P. Novel performance in physical and corrosion resistance HfN/VN coating system. Surf. Coat. Technol. 2013, 221, 182–190. [Google Scholar] [CrossRef]
- Pilania, G.; Iverson, C.N.; Lookman, T.; Marrone, B.L. Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers. J. Chem. Inf. Model. 2019, 59, 5013–5025. [Google Scholar] [PubMed]
- Bahoria, B.V.; Pande, P.B.; Dhengare, S.W.; Raut, J.M.; Bhagat, R.M.; Shelke, N.M.; Uparkar, S.S.; Vairagade, V.S. Predictive Models for Properties of Hybrid Blended Modified Sustainable Concrete Incorporating Nano-Silica, Basalt Fibers, and Recycled Aggregates: Application of Advanced Artificial Intelligence Techniques. Nano-Struct. Nano-Objects 2024, 40, 101373. [Google Scholar]
- Otsuka, S.; Kuwajima, I.; Hosoya, J.; Xu, Y.; Yamazaki, M. PoLyInfo: Polymer Database for Polymeric Materials Design. In Proceedings of the 2011 International Conference on Emerging Intelligent Data and Web Technologies, Tirana, Albania, 7–9 September 2011; pp. 22–29. [Google Scholar]
- Gautham, S.M.B.; Patra, T.K. Deep Learning Potential of Mean Force between Polymer Grafted Nanoparticles. Soft Matter 2022, 18, 7909–7916. [Google Scholar] [CrossRef]
- Shi, J.; Quevillon, M.J.; Amorim Valenca, P.H.; Whitmer, J.K. Predicting Adhesive Free Energies of Polymer–Surface Interactions with Machine Learning. ACS Appl. Mater. Interfaces 2022, 14, 37161–37169. [Google Scholar] [CrossRef]
- Wicks, Z.W.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: New York, NY, USA, 2017; p. 512. [Google Scholar]
- Mishra, A.A.; Ghai, V.; Matovic, V.; Arlov, D.; Kádár, R. One test to predict them all: Rheological characterization of complex fluids via artificial neural network. Eng. Appl. Artif. Intell. 2025, 139, 109598. [Google Scholar]
- Lv, H.; Yang, K.; You, J.; Wang, S. Operational Stability Analysis on the Roller-Coating Process for a Roll Coating-Simulation Test Equipment. Machines 2022, 10, 304. [Google Scholar]
- Ai, L.; Li, P.; Yuan, H.; Tian, C.; Qiang, X.; Fu, T. Investigation of Constitutive Models for Pressure Monitoring of Viscoelastic–Hyperelastic Composite Structures. Polymers 2025, 17, 647. [Google Scholar] [CrossRef]
- Camalan, M.; Arol, A.İ. Preliminary assessment of spray coating, solution-immersion and dip coating to render minerals superhydrophobic. Miner. Eng. 2022, 176, 107357. [Google Scholar]
- Qin, Z.; Wang, F.; Tang, S.; Liang, S. A Machine Learning Approach to Predict Fluid Viscosity Based on Droplet Dynamics Features. Appl. Sci. 2024, 14, 3537. [Google Scholar] [CrossRef]
- Ahangar, M.N.; Farhat, Z.A.; Sivanathan, A. AI Trustworthiness in Manufacturing: Challenges, Toolkits, and the Path to Industry 5.0. Sensors 2025, 25, 4357. [Google Scholar] [CrossRef]
- Webb, M.A.; Jackson, N.E.; Gil, P.S.; de Pablo, J.J. Targeted Sequence Design Within the Coarse-Grained Polymer Genome|Science Advances. Sci. Adv. 2020, 6, eabc6216. [Google Scholar] [CrossRef]
- Queen, O.; McCarver, G.A.; Thatigotla, S.; Abolins, B.P.; Brown, C.L.; Maroulas, V.; Vogiatzis, K.D. Polymer Graph Neural Networks for Multitask Property Learning. npj Comput. Mater. 2023, 9, 90. [Google Scholar]
- Zhao, Y.; Mulder, R.J.; Houshyar, S.; Le, T.C. A Review on the Application of Molecular Descriptors and Machine Learning in Polymer Design. Polym. Chem. 2023, 14, 3325–3346. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Valkenborg, D.; Rousseau, A.-J.; Geubbelmans, M.; Burzykowski, T. Support Vector Machines. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fitzsimons, J.K.; Fitzsimons, J.F. Quantum-Assisted Gaussian Process Regression. Phys. Rev. A 2019, 99, 052331. [Google Scholar] [CrossRef]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop Chall. Represent. Learn. 2013, 3, 896. [Google Scholar]
- Louis, S.-Y.; Zhao, Y.; Nasiri, A.; Wang, X.; Song, Y.; Liu, F.; Hu, J. Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 2020, 22, 18141–18148. [Google Scholar] [CrossRef]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017. [Google Scholar]
- Pei, Z.; Rozman, K.A.; Dŏgan, O.N.; Wen, Y.; Gao, N.; Holm, E.A.; Hawk, J.A.; Alman, D.E.; Gao, M.C. Machine-Learning Microstructure for Inverse Material Design. Adv. Sci. 2021, 8, 2101207. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, S.; Li, S.; Yang, J.; Liu, D. A Two-Step Data Augmentation Method Based on Generative Adversarial Network for Hardness Prediction of High Entropy Alloy. Comput. Mater. Sci. 2023, 220, 112064. [Google Scholar] [CrossRef]
- Song, J.; Meng, C.; Ermon, S. Denoising Diffusion Implicit Models. arXiv 2020, arXiv:2010.02502. [Google Scholar]
- Nguyen, D.; Tao, L.; Li, Y. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design. Front. Chem. 2022, 9, 820417. [Google Scholar] [CrossRef] [PubMed]
- Hiraide, K.; Oya, Y.; Suzuki, M.; Muramatsu, M. Inverse Design of Polymer Alloys Using Deep Learning Based on Self-Consistent Field Analysis and Finite Element Analysis. Mater. Today Commun. 2023, 37, 107233. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Schmitt, S.; Olhofer, M. Recent Advances in Bayesian Optimization. ACM Comput. Surv. 2023, 55, 1–36. [Google Scholar] [CrossRef]
- Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Guo, Z.; Jiang, F.; Ouyang, R.; Ding, P. Machine Learning and Structural Design to Optimize the Flame Retardancy of Polymer Nanocomposites with Graphene Oxide Hydrogen Bonded Zinc Hydroxystannate. ACS Appl. Mater. Interfaces 2021, 13, 53425–53438. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Joshi, A.; Dey, R.; Misra, S. Machine-Learning-Assisted Materials Discovery from Electronic Band Structure. J. Chem. Inf. Model. 2024, 64, 8404–8413. [Google Scholar]
- Deagen, M.E.; Walsh, D.J.; Audus, D.J.; Kroenlein, K.; de Pablo, J.J.; Aou, K.; Chard, K.; Jensen, K.F.; Olsen, B.D. Networks and Interfaces as Catalysts for Polymer Materials Innovation. Cell Rep. Phys. Sci. 2022, 3, 101126. [Google Scholar] [CrossRef]
- Yoo, H.; Byun, H.E.; Han, D.; Lee, J.H. Reinforcement Learning for Batch Process Control: Review and Perspectives. Annu. Rev. Control 2021, 52, 108–119. [Google Scholar]
- Chen, J. Advanced Electron Microscopy of Nanophased Synthetic Polymers and Soft Complexes for Energy and Medicine Applications. Nanomaterials 2021, 11, 2405. [Google Scholar] [CrossRef]
- Schmid, F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS Polym. Au 2023, 3, 28–58. [Google Scholar] [CrossRef]
- Abate, K.M.; Nazir, A.; Yeh, Y.-P.; Chen, J.-E.; Jeng, J.-Y. Design, optimization, and validation of mechanical properties of different cellular structures for biomedical application. Int. J. Adv. Manuf. Technol. 2019, 106, 1253–1265. [Google Scholar] [CrossRef]
- Raabe, D.; Mianroodi, J.R.; Neugebauer, J. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nat. Comput. Sci. 2023, 3, 198–209. [Google Scholar] [CrossRef]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Buehler, M.J. Deep language models for interpretative and predictive materials science. APL Mach. Learn. 2023, 1, 010901. [Google Scholar] [CrossRef]
- Zhu, Y.; Kwok, T.; Haug, J.C.; Guo, S.; Chen, X.; Xu, W.; Ravichandran, D.; Tchoukalova, Y.D.; Cornella, J.L.; Yi, J.; et al. 3D Printable Hydrogel with Tunable Degradability and Mechanical Properties as a Tissue Scaffold for Pelvic Organ Prolapse Treatment. Adv. Mater. Technol. 2023, 8, 2201421. [Google Scholar] [CrossRef]
- Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L.M. SISSO: A Compressed-Sensing Method for Identifying the Best Low-Dimensional Descriptor in an Immensity of Offered Candidates. Phys. Rev. Mater. 2018, 2, 083802. [Google Scholar] [CrossRef]
- Zahrt, A.F.; Henle, J.J.; Rose, B.T.; Wang, Y.; Darrow, W.T.; Denmark, S.E. Prediction of higher-selectivity catalysts by computerdriven workflow and machine learning. Science 2019, 363, eaau5631. [Google Scholar] [CrossRef]
- Alsakka, F.; Assaf, S.; El-Chami, I.; Al-Hussein, M. Computer vision applications in offsite construction. Autom. Constr. 2023, 154, 104980. [Google Scholar] [CrossRef]
- Blismas, N.; Pasquire, C.; Gibb, A. Benefit evaluation for off-site production in construction. Constr. Manag. Econ. 2006, 24, 121–130. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Han, J.-M. Deep Learning (Fast R-CNN)-Based Evaluation of Rail Surface Defects. Appl. Sci. 2024, 14, 1874. [Google Scholar] [CrossRef]
- Huang, X.; Duan, Z.; Hao, S.; Hou, J.; Chen, W.; Cai, L. A Deep Learning Framework for Corrosion Assessment of Steel Structures Using Inception v3 Model. Buildings 2025, 15, 512. [Google Scholar] [CrossRef]
- Rajendran, M.; Subbian, D. Deep learning in corrosion assessment and control: A critical review of techniques and challenges. Corros. Rev. 2025. [Google Scholar] [CrossRef]
- Ramonell, C.; Chacon, R.; Posada, H. Knowledge graph-based data integration system for digital twins of built assets. Autom. Constr. 2023, 156, 105109. [Google Scholar] [CrossRef]
- Cole, A.; Sianaki, O.A.; Shee, H. Conceptualizing a Digital Twin Architecture for Enhanced Control in Precast Concrete Production. In Complex, Intelligent and Software Intensive Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 261–272. [Google Scholar]
- Wu, S.; Kondo, Y.; Kakimoto, M.A.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 2019, 5, 66. [Google Scholar] [CrossRef]
- Finke, A.; Escobar, J.; Munoz, J.; Petit, M. Prediction of Salt Spray Test Results of Micro Arc Oxidation Coatings on AA2024 Alloys by Combination of Accelerated Electrochemical Test and Artificial Neural Network. Surf. Coat. Technol. 2021, 421, 127370. [Google Scholar] [CrossRef]
- Zhong, X.; Gallagher, B.; Liu, S.; Kailkhura, B.; Hiszpanski, A.; Han, T.Y.-J. Explainable machine learning in materials science. npj Comput. Mater. 2022, 8, 204. [Google Scholar] [CrossRef]
- Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.; Li, S.; Nguyen, A.; Malaga-Chuquitaype, C.; Gardoni, P.; Mirjalili, S. A critical review on structural health monitoring: Definitions, methods, and perspectives. Arch. Comput. Methods Eng. 2021, 29, 2209–2235. [Google Scholar] [CrossRef]
- Palma, V.; Iovane, G.; Hwang, S.; Mazzolani, F.M.; Landolfo, R.; Sohn, H.; Faggiano, B. Innovative Technologies for Structural Health Monitoring of SFTs: Proposal of Combination of Infrared Thermography with Mixed Reality. J. Civ. Struct. Health Monit. 2023, 13, 1653–1681. [Google Scholar] [CrossRef]
- Pushpakumara, B.H.J.; Thusitha, G.A. Development of a Structural Health Monitoring Tool for Underwater Concrete Structures. J. Constr. Eng. Manag. 2021, 147, 04021135. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Song, Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors 2023, 23, 1877. [Google Scholar] [CrossRef]
- Anastasopoulos, A.; Kourousis, D.; Botten, S.; Wang, G. Acoustic emission monitoring for detecting structural defects in vessels and offshore structures. Ships Offshore Struct. 2009, 4, 363–372. [Google Scholar] [CrossRef]
- Wang, X.Q.; Chen, P.; Chow, C.L.; Lau, D. Artificial-intelligence-led revolution of construction materials: From molecules to Industry 4.0. Matter 2023, 6, 1831–1859. [Google Scholar] [CrossRef]
- Xie, M.C.; Pan, W. Opportunities and challenges of digital twin applications in modular integrated construction. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Kitakyushu, Japan, 27–28 October 2020; IAARC Publications: Dubai, United Arab Emirates, 2020; pp. 278–284. [Google Scholar]
- Zhao, L.; Liu, Z.; Mbachu, J. Development of intelligent prefabs using IoT technology to improve the performance of prefabricated construction projects. Sensors 2019, 19, 4131. [Google Scholar] [CrossRef]
- Wang, M.; Altaf, M.S.; Al-Hussein, M.; Ma, Y. Framework for an IoT-based shop floor material management system for panelized homebuilding. Int. J. Constr. Manag. 2020, 20, 130–145. [Google Scholar] [CrossRef]
- Hu, X.; Assaad, R.H. A BIM-enabled digital twin framework for real-time indoor environment monitoring and visualization by integrating autonomous robotics, LiDAR-based 3D mobile mapping, IoT sensing, and indoor positioning technologies. J. Build. Eng. 2024, 86, 108901. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, Z.; Manu, P.; Li, N. Falling risk analysis at workplaces through an accident data-driven approach based upon hybrid artificial intelligence (AI) techniques. Saf. Sci. 2025, 185, 106814. [Google Scholar] [CrossRef]
- Yitmen, I.; Almusaed, A.; Hussein, M.; Almssad, A. AI-Driven Digital Twins for Enhancing Indoor Environmental Quality and Energy Efficiency in Smart Building Systems. Buildings 2025, 15, 1030. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared Thermography for Condition Monitoring—A Review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Ghafari, R. Integrating Smart Polymers, Digital Twins, and AI for Corrosion Mitigation and Structural Health Monitoring in Large-Scale Infrastructure: A Case Study on the Golden Gate Bridge Rasoul Ghafari. In Proceedings of the International Conference on Urban Planning, Architecture, Civil Engineering and Environment, Wolfsburg, Germany, 6 March 2025. [Google Scholar]
- Kontus, O.; Kotta, J. Sustainable Marine Coatings: Comparing the Costs, Benefits, and Impacts of Biocidal and Biocide-Free Paints. Coatings 2025, 15, 931. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Liu, J. Polymer Data Challenges in the AI Era: Bridging Gaps for Next-Generation Energy Materials. arXiv 2025, arXiv:2505.13494. [Google Scholar]
- Vela, D.; Sharp, A.; Zhang, R.; Nguyen, T.; Hoang, A.; Pianykh, O.S. Temporal quality degradation in AI models. Sci. Rep. 2022, 12, 11654. [Google Scholar] [CrossRef] [PubMed]
- Häse, F.; Roch, L.M.; Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 2019, 1, 282–291. [Google Scholar] [CrossRef]




| Type | Chemical Structures/ Binder System | Primary Advantages | Typical Applications | Limitations | Refs. |
|---|---|---|---|---|---|
| Epoxy | Bisphenol A or Novolac epoxy + amine or anhydride hardener | Excellent adhesion, chemical resistance, hardness, and corrosion protection | Steel/concrete bridges, marine structures, and rebars in concrete | Brittle; poor UV resistance; chalking under sunlight | [28] |
| Polyurethane | Polyol + isocyanate crosslinking | High flexibility, abrasion resistance, UV stability, good gloss retention | Bridges, tanks, offshore platforms | Sensitive to humidity during curing | [29] |
| Acrylic | Poly (methyl methacrylate) or copolymers (e.g., styreneacrylate) | Transparency, weather resistance, color retention, environmental friendliness | Protective coatings for concrete facades and composite surfaces | Lower chemical and solvent resistance | [30] |
| Fluoropolymer | PVDF, PTFE, or FEVE-based polymers | Exceptional chemical resistance, low surface energy, self-cleaning | High-rise buildings, marine and chemical plants | Poor adhesion; high curing temperature; expensive | [31] |
| Silicone | Polysiloxane-based networks | Excellent thermal stability, hydrophobicity, anti-icing, and UV resistance | High-temperature surfaces, marine and anti-icing coatings | Limited mechanical strength; lower hardness | [32] |
| Hybrid/ Nanocomposite | Organic-inorganic networks (epoxy-silane, sol–gel, TiO2, SiO2, graphene fillers) | Synergistic strength, toughness, corrosion resistance, or self-healing behavior | Multifunctional marine coatings, self-healing and sensing layers | Complex synthesis; scale issues | [33] |
| Property | Testing Method | Measurement | Refs. |
|---|---|---|---|
| Corrosion resistance | Salt spray (foggy) test | Time to rusting, blistering, or delamination | [34] |
| Moisture resistance | Humidity chamber test | Flim blistering, adhesion retention | [35] |
| Adhesion | Cross-cut, pull-off tests | Bond strength, interfacial failure pattern | [36] |
| Mechanical durability | Taber abrasion, impact resistance | Wear rate, deformation tolerance | [37] |
| Chemical resistance | Solvent hub, immersion tests | Surface degradation, color change | [38] |
| Weathering | QUV accelerated aging | Gloss retention, micro-cracking | [39] |
| Coating Technique | Typical Structural Use | Constraints | AI-Predicted Formulation Parameters | Mechanistic Influence on Application Success | Refs. |
|---|---|---|---|---|---|
| Airless spraying |
|
|
|
| [53,54] |
| Roller coating |
|
|
|
| [55,56] |
| Dipping/ Immersion coating |
|
|
|
| [57,58] |
| AI/ML Algorithm | Typical Input | Applications in Polymeric Coatings | Key Strengths | Limitations |
|---|---|---|---|---|
| Convolutional Neural Networks | Images micrographs, hyperspectral data | Surface defect detection, coating thickness uniformity, microstructure analysis | Excellent spatial feature extraction; high accuracy in vision-based tasks | Requires large labeled datasets; low interpretability |
| Recurrent Neural Networks | Time-series data (aging, curing, degradation curves) | Cure kinetics modeling, durability and lifetime prediction | Captures temporal dependencies; suitable for degradation trends | Training instability; limited interpretability |
| Random Forests | Tabular data (formulation, processing, properties) | Property prediction, formulation optimization, screening studies | Robust to noise; good interpretability; works with small datasets | Limited extrapolation capability |
| Support Vector Machines | Low-to-medium dimensional structured data | Classification of coating performance, failure modes | Effective for small datasets; strong generalization | Limited scalability; kernel selection sensitivity |
| Artificial Neural Networks | Tabular, mixed experimental data | Property prediction, multi-parameter optimization | Flexible nonlinear mapping; widely used | Black-box nature; risk of overfitting |
| Graph Convolutional Networks | Molecular graphs, formulation networks | Polymer chemistry design, structure–property relationships | Encodes relational and molecular information effectively | High complexity; limited industrial datasets |
| Gaussian Process Regression | Small experimental datasets | Uncertainty-aware property prediction, Bayesian optimization | Provides uncertainty quantification; data-efficient | Poor scalability for large datasets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, M.O. AI-Driven Polymeric Coatings: Strategies for Material Selection and Performance Evaluation in Structural Applications. Polymers 2026, 18, 5. https://doi.org/10.3390/polym18010005
Kim MO. AI-Driven Polymeric Coatings: Strategies for Material Selection and Performance Evaluation in Structural Applications. Polymers. 2026; 18(1):5. https://doi.org/10.3390/polym18010005
Chicago/Turabian StyleKim, Min Ook. 2026. "AI-Driven Polymeric Coatings: Strategies for Material Selection and Performance Evaluation in Structural Applications" Polymers 18, no. 1: 5. https://doi.org/10.3390/polym18010005
APA StyleKim, M. O. (2026). AI-Driven Polymeric Coatings: Strategies for Material Selection and Performance Evaluation in Structural Applications. Polymers, 18(1), 5. https://doi.org/10.3390/polym18010005
