Radiation Attenuation Calculation of 3D-Printed Polymers Across Variable Infill Densities and Phase Angles for Nuclear Medicine Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Computer-Aided Design (CAD) and Theoretical Density Calculation
2.2. Radiation Attenuation Calculation
2.3. Statistical Analysis of Linear Attenuation Coefficients
3. Results and Discussion
- (1)
- EpiXS assumes macroscopic uniformity and cannot simulate geometric orientation effects;
- (2)
- Any real-world pathlength or anisotropy effects are below the sensitivity of the homogenized model; and
- (3)
- High-fidelity Monte Carlo simulations or physical measurements were beyond the scope of this study.
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS | Acrylonitrile Butadiene Styrene |
| PLA | Polylactic Acid |
| TPU | Thermoplastic Polyurethane |
| CAD | Computer-Aided Design |
| LAC | Linear Attenuation Coefficient |
References
- Magrini, S.M.; Pasinetti, N.; Belgioia, L.; Triggiani, L.; Levis, M.; Ricardi, U.; Corvò, R. Applying radiation protection and safety in radiotherapy. Radiol. Medica 2019, 124, 777–782. [Google Scholar] [CrossRef]
- Ploussi, A.; Efstathopoulos, E.P.; Brountzos, E. The Importance of Radiation Protection Education and Training for Medical Professionals of All Specialties. Cardiovasc. Interv. Radiol. 2021, 44, 829–834. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Linet, M.S.; Drozdovitch, V.; Alexander, B.H.; Preston, D.L.; Simon, S.L.; Freedman, D.M.; Brill, A.B.; Miller, J.S.; Little, M.P.; et al. Cancer and circulatory disease risks in US radiologic technologists associated with performing procedures involving radionuclides. Occup. Environ. Med. 2015, 72, 770–776. [Google Scholar] [CrossRef]
- Talley, S.J.; Robison, T.; Long, A.M.; Lee, S.Y.; Brounstein, Z.; Lee, K.-S.; Geller, D.; Lum, E.; Labouriau, A. Flexible 3D printed silicones for gamma and neutron radiation shielding. Radiat. Phys. Chem. 2021, 188, 109616. [Google Scholar] [CrossRef]
- Kharfi, F.; Benkahila, K.; Boulkhessaim, F.; Betka, A.; Meziri, A.; Khelfa, S.; Ghediri, N. Implementation of 3D Printing and Modeling Technologies for the Fabrication of Dose Boluses for External Radiotherapy at the CLCC of Sétif, Algeria. Technol. Cancer Res. Treat. 2024, 23, 15330338241266479. [Google Scholar] [CrossRef] [PubMed]
- MIRA Safety. MIRA Safety HAZ-SUIT Protective CBRN HAZMAT Suit. Available online: https://www.mirasafety.com/products/mira-safety-haz-suit-hazmat-suit?srsltid=AfmBOoqhBKbIQBDdzPsxVIQiR514TNeLpsu4taPO9OZQ__FtPnA4GtOt (accessed on 5 October 2024).
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Almisned, G.; Akman, F.; AbuShanab, W.S.; Tekin, H.O.; Kaçal, M.R.; Issa, S.A.M.; Polat, H.; Oltulu, M.; Ene, A.; Zakaly, H.M.H. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polymers 2021, 13, 3157. [Google Scholar] [CrossRef]
- Mokhtari, K.; Saadi, M.K.; Panahi, H.A.; Jahanfarnia, G. The shielding properties of the ordinary concrete reinforced with innovative nano polymer particles containing PbO–H3BO3 for dual protection against gamma and neutron radiations. Radiat. Phys. Chem. 2021, 189, 109711. [Google Scholar] [CrossRef]
- InFab. Radiation Shielding. Available online: https://infabcorp.com/products/radiation-shielding/ (accessed on 6 July 2023).
- McCaffrey, J.P.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2007, 34, 530–537. [Google Scholar] [CrossRef]
- Beck, D.; Bickus, J.; Klein, E.; Miller, P.; Di Cecca, S.; Benz, R.; Barney, A.; Longton, R.; Coon, A.; Smith, M.; et al. Additive Manufacturing of Multimaterial Composites for Radiation Shielding and Thermal Management. ACS Appl. Mater. Interfaces 2023, 15, 35400–35410. [Google Scholar] [CrossRef] [PubMed]
- Jakupi, K.; Dukovski, V.; Kočov, A. Analysis of additive manufacturing technology input parameters in manufacturing of bolus. Mech. Eng. Sci. J. 2022, 40, 17–22. [Google Scholar] [CrossRef]
- Diaz-Merchan, J.A.; Martinez-Ovalle, S.A.; Vega-Carrillo, H.R. Development of a 3D printing process of bolus using BolusCM material for radiotherapy with electrons. Appl. Radiat. Isot. 2023, 199, 110899. [Google Scholar] [CrossRef]
- Sands, G.; Clark, C.H.; McGarry, C.K. A review of 3D printing utilisation in radiotherapy in the United Kingdom and Republic of Ireland. Phys. Medica 2023, 115, 103143. [Google Scholar] [CrossRef]
- Ahmed, A.M.M.; Buschmann, M.; Breyer, L.; Kuntner, C.; Homolka, P. Tailoring the Mass Density of 3D Printing Materials for Accurate X-ray Imaging Simulation by Controlled Underfilling for Radiographic Phantoms. Polymers 2024, 16, 1116. [Google Scholar] [CrossRef]
- Okkalidis, F.; Chatzigeorgiou, C.; Okkalidis, N.; Dukov, N.; Milev, M.; Bliznakov, Z.; Mettivier, G.; Russo, P.; Bliznakova, K. Characterization of Commercial and Custom-Made Printing Filament Materials for Computed Tomography Imaging of Radiological Phantoms. Technologies 2024, 12, 139. [Google Scholar] [CrossRef]
- Ma, X.; Buschmann, M.; Unger, E.; Homolka, P. Classification of X-Ray Attenuation Properties of Additive Manufacturing and 3D Printing Materials Using Computed Tomography from 70 to 140 kVp. Front. Bioeng. Biotechnol. 2021, 9, 763960. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, A.C.; Petcu, L.C.; Járai-Szabó, F.; Bálint, Z. Exploring the impact of filament density on the responsiveness of 3D-Printed bolus materials for high-energy photon radiotherapy. Phys. Med. 2024, 127, 104849. [Google Scholar] [CrossRef]
- Kavun, Y.; Kamer, M.S. Effect of line width and layer height variation on radiation shielding properties of 3D-printed poly(lactic acid) materials. Radiat. Phys. Chem. 2026, 240, 113410. [Google Scholar] [CrossRef]
- Mei, K.; Pasyar, P.; Geagan, M.; Liu, L.P.; Shapira, N.; Gang, G.J.; Stayman, J.W.; Noël, P.B. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. Sci. Rep. 2023, 13, 17495. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Liu, C.; Coppola, B.; Barra, G.; Di Maio, L.; Incarnato, L.; Lafdi, K. Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Wynn, M.; Quigley, L.; Salviato, M.; Zobeiry, N. Effect of temperature history during additive manufacturing on crystalline morphology of PEEK. Adv. Ind. Manuf. Eng. 2022, 4, 100085. [Google Scholar] [CrossRef]
- Xiao, J.; Lei, Y. Enriching Semantics of Geometry Features and Parameters for Additive Manufacturing Peculiar Structure Based on STEP Standards. Crystals 2022, 12, 1154. [Google Scholar] [CrossRef]
- Hila, F.C.; Asuncion-Astronomo, A.; Dingle, C.A.M.; Jecong, J.F.M.; Javier-Hila, A.M.V.; Gili, M.B.Z.; Balderas, C.V.; Lopez, G.E.P.; Guillermo, N.R.D.; Amorsolo, A.V. EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiat. Phys. Chem. 2021, 182, 109331. [Google Scholar] [CrossRef]
- Dassault Systèmes—SolidWorks Corporation. Dassault Solidworks. 2020. Available online: https://www.solidworks.com/ (accessed on 12 December 2025).
- Gregor-Svetec, D. Polymers in printing filaments. In Polymers for 3D Printing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 155–269. [Google Scholar] [CrossRef]
- Prajapati, S.; Sharma, J.K.; Kumar, S.; Pandey, S.; Pandey, M.K. A review on comparison of physical and mechanical properties of PLA, ABS, TPU, and PETG manufactured engineering components by using fused deposition modelling. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Sardinha, M.; Ferreira, L.; Diogo, H.; Ramos, T.R.P.; Reis, L.; Vaz, M.F. Material extrusion of TPU: Thermal characterization and effects of infill and extrusion temperature on voids, tensile strength and compressive properties. Rapid Prototyp. J. 2025, 31, 62–81. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D printing of PLA-TPU with different component ratios: Fracture toughness, mechanical properties, and morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Choi, Y.; Jang, Y.J.; Kim, K.B.; Bahng, J.; Choi, S.H. Characterization of Tissue Equivalent Materials Using 3D Printing for Patient-Specific DQA in Radiation Therapy. Appl. Sci. 2022, 12, 9768. [Google Scholar] [CrossRef]
- Tong, H.; Pegues, H.; Samei, E.; Lo, J.Y.; Wiley, B.J. Technical note: Controlling the attenuation of 3D-printed physical phantoms for computed tomography with a single material. Med. Phys. 2022, 49, 2582–2589. [Google Scholar] [CrossRef]
- Sathish, K.; Manjunatha, H.; Vidya, Y.; Sridhar, K.; Seenappa, L.; Reddy, B.C.; Raj, S.A.C.; Gupta, P.D. X-rays/gamma rays radiation shielding properties of Barium–Nickel–Iron oxide nanocomposite synthesized via low temperature solution combustion method. Radiat. Phys. Chem. 2022, 194, 110053. [Google Scholar] [CrossRef]
- Sathish, K.; Sridhar, K.; Seenappa, L.; Manjunatha, H.; Vidya, Y.; Reddy, B.C.; Manjunatha, S.; Santhosh, A.; Munirathnam, R.; Raj, A.C.; et al. X-ray/gamma radiation shielding properties of Aluminium-Barium Zinc Oxide nanoparticles synthesized via low temperature solution combustion method. Nucl. Eng. Technol. 2023, 55, 1519–1526. [Google Scholar] [CrossRef]
- Alshahri, S.; Alsuhybani, M.; Alosime, E.; Almurayshid, M.; Alrwais, A.; Alotaibi, S. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding. Polymers 2021, 13, 3081. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef] [PubMed]
- Aghamiri, M.R.; Mortazavi, S.M.J.; Tayebi, M.; Mosleh-Shirazi, M.A.; Baharvand, H.; Tavakkoli-Golpayegani, A.; Zeinali-Rafsanjani, B. A Novel Design for Production of Efficient Flexible Lead-Free Shields against X-ray Photons in Diagnostic Energy Range. J. Biomed. Phys. Eng. 2011, 1, 17–21. [Google Scholar]
- Santos, J.C.; Almeida, C.D.; Iwahara, A.; Peixoto, J.E. Characterization and applicability of low-density materials for making 3D physical anthropomorphic breast phantoms. Radiat. Phys. Chem. 2019, 164, 108361. [Google Scholar] [CrossRef]
- Savi, M.; Villani, D.; Andrade, M.A.B.; Rodrigues, O.; Potiens, M.P.A. Study on attenuation of 3D printing commercial filaments on standard X-ray beams for dosimetry and tissue equivalence. Radiat. Phys. Chem. 2021, 182, 109365. [Google Scholar] [CrossRef]
- Kairn, T.; Crowe, S.B.; Markwell, T. Use of 3D Printed Materials as Tissue-Equivalent Phantoms. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Toronto, ON, Canada, 7–12 June 2015; pp. 728–731. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, T.; Yuan, L.; Fang, Q.; Wang, X.; Guo, X.; Zhang, D.; Lai, C.; Wang, Q.; Liu, Y. A comparative study between pure bismuth/tungsten and the bismuth tungsten oxide for flexible shielding of gamma/X rays. Radiat. Phys. Chem. 2023, 208, 110906. [Google Scholar] [CrossRef]






| Infill Density, % | Distance of Infills, mm |
|---|---|
| 30 | 2.33 |
| 50 | 1.00 |
| 70 | 0.44 |
| 90 | 0.11 |
| 100 | - |
| Polymer | Chemical Formula | Chemical Structure | Characteristics | References |
|---|---|---|---|---|
| ABS | ((C8H8·C4H6·C3H3N)n) | ![]() | Tensile strength at break is 15–50 MPa; strong, stiff, and durable; chemically resistant material; resistant to warping; 1.03 g/cc density | [27] |
| PLA | ((C3H4O2)n) | ![]() | Tensile strength at break is 31–43 MPa; Very brittle; easy to print; non-toxic; and biodegradable; 1.24 g/cc density | [28] |
| TPU | ((C3H8N2O)n) | ![]() | Tensile strength at break is 22–40 MPa; adoption to medical applications; high ductility and toughness; 1.22 g/cc density | [29,30] |
| Infill Density (%) | Angle | ||||
|---|---|---|---|---|---|
| 0° | 30° | 45° | 60° | 90° | |
| 30% | ![]() | ![]() | ![]() | ![]() | ![]() |
| 50% | ![]() | ![]() | ![]() | ![]() | ![]() |
| 70% | ![]() | ![]() | ![]() | ![]() | ![]() |
| 90% | ![]() | ![]() | ![]() | ![]() | ![]() |
| Material | Infill Density | Infill Phase Angle | Theoretical Volume with Airgap, cm3 | Theoretical Volume of Infill, cm3 | Theoretical Mass, g | Theoretical Density, g/cm3 |
|---|---|---|---|---|---|---|
| ABS | 30 | 0 | 39.25 | 15.746 | 17.64 | 0.44931 |
| ABS | 50 | 0 | 39.25 | 22.984 | 25.74 | 0.65585 |
| ABS | 70 | 0 | 39.25 | 28.815 | 32.27 | 0.82224 |
| ABS | 90 | 0 | 39.25 | 35.651 | 39.93 | 1.01730 |
| ABS | 100 | 0 | 39.25 | 39.25 | 43.96 | 1.12000 |
| PLA | 30 | 0 | 39.25 | 15.746 | 18.42 | 0.46937 |
| PLA | 50 | 0 | 39.25 | 22.984 | 26.89 | 0.68513 |
| PLA | 70 | 0 | 39.25 | 28.815 | 33.71 | 0.85894 |
| PLA | 90 | 0 | 39.25 | 35.651 | 41.71 | 1.06272 |
| PLA | 100 | 0 | 39.25 | 39.25 | 45.92 | 1.17000 |
| TPU | 30 | 0 | 39.25 | 15.746 | 19.21 | 0.48943 |
| TPU | 50 | 0 | 39.25 | 22.984 | 28.04 | 0.71441 |
| TPU | 70 | 0 | 39.25 | 28.815 | 35.15 | 0.89565 |
| TPU | 90 | 0 | 39.25 | 35.651 | 43.49 | 1.10813 |
| TPU | 100 | 0 | 39.25 | 39.25 | 47.89 | 1.22000 |
| ABS | 30 | 30 | 39.25 | 16.471 | 18.45 | 0.47000 |
| ABS | 50 | 30 | 39.25 | 22.981 | 25.74 | 0.65576 |
| ABS | 70 | 30 | 39.25 | 29.498 | 33.04 | 0.84173 |
| ABS | 90 | 30 | 39.25 | 36.013 | 40.33 | 1.02763 |
| ABS | 100 | 30 | 39.25 | 39.25 | 43.96 | 1.12000 |
| PLA | 30 | 30 | 39.25 | 16.471 | 19.27 | 0.49098 |
| PLA | 50 | 30 | 39.25 | 22.981 | 26.89 | 0.68504 |
| PLA | 70 | 30 | 39.25 | 29.498 | 34.51 | 0.87930 |
| PLA | 90 | 30 | 39.25 | 36.013 | 42.14 | 1.07351 |
| PLA | 100 | 30 | 39.25 | 39.25 | 45.92 | 1.17000 |
| TPU | 30 | 30 | 39.25 | 16.471 | 20.09 | 0.51196 |
| TPU | 50 | 30 | 39.25 | 22.981 | 28.04 | 0.71431 |
| TPU | 70 | 30 | 39.25 | 29.498 | 35.99 | 0.91688 |
| TPU | 90 | 30 | 39.25 | 36.013 | 43.94 | 1.11938 |
| TPU | 100 | 30 | 39.25 | 39.25 | 47.89 | 1.22000 |
| ABS | 30 | 0 | 39.25 | 15.746 | 17.64 | 0.44931 |
| ABS | 30 | 30 | 39.25 | 16.471 | 18.45 | 0.47000 |
| ABS | 30 | 45 | 39.25 | 16.468 | 18.44 | 0.46991 |
| ABS | 30 | 60 | 39.25 | 16.474 | 18.45 | 0.47009 |
| ABS | 30 | 90 | 39.25 | 16.438 | 18.41 | 0.46906 |
| PLA | 30 | 0 | 39.25 | 15.746 | 18.42 | 0.46937 |
| PLA | 30 | 30 | 39.25 | 16.471 | 19.27 | 0.49098 |
| PLA | 30 | 45 | 39.25 | 16.468 | 19.27 | 0.49089 |
| PLA | 30 | 60 | 39.25 | 16.474 | 19.27 | 0.49107 |
| PLA | 30 | 90 | 39.25 | 16.438 | 19.23 | 0.49000 |
| TPU | 30 | 0 | 39.25 | 15.746 | 19.21 | 0.48943 |
| TPU | 30 | 30 | 39.25 | 16.471 | 20.09 | 0.51196 |
| TPU | 30 | 45 | 39.25 | 16.468 | 20.09 | 0.51187 |
| TPU | 30 | 60 | 39.25 | 16.474 | 20.10 | 0.51206 |
| TPU | 30 | 90 | 39.25 | 16.438 | 20.05 | 0.51094 |
| ABS | 50 | 0 | 39.25 | 22.984 | 25.74 | 0.65585 |
| ABS | 50 | 30 | 39.25 | 22.981 | 25.74 | 0.65576 |
| ABS | 50 | 45 | 39.25 | 22.984 | 25.74 | 0.65585 |
| ABS | 50 | 60 | 39.25 | 22.983 | 25.74 | 0.65582 |
| ABS | 50 | 90 | 39.25 | 22.983 | 25.74 | 0.65582 |
| PLA | 50 | 0 | 39.25 | 22.984 | 26.89 | 0.68513 |
| PLA | 50 | 30 | 39.25 | 22.981 | 26.89 | 0.68504 |
| PLA | 50 | 45 | 39.25 | 22.984 | 26.89 | 0.68513 |
| PLA | 50 | 60 | 39.25 | 22.983 | 26.89 | 0.68510 |
| PLA | 50 | 90 | 39.25 | 22.983 | 26.89 | 0.68510 |
| TPU | 50 | 0 | 39.25 | 22.984 | 28.04 | 0.71441 |
| TPU | 50 | 30 | 39.25 | 22.981 | 28.04 | 0.71431 |
| TPU | 50 | 45 | 39.25 | 22.984 | 28.04 | 0.71441 |
| TPU | 50 | 60 | 39.25 | 22.983 | 28.04 | 0.71438 |
| TPU | 50 | 90 | 39.25 | 22.983 | 28.04 | 0.71438 |
| ABS | 70 | 0 | 39.25 | 28.815 | 32.27 | 0.82224 |
| ABS | 70 | 30 | 39.25 | 29.498 | 33.04 | 0.84173 |
| ABS | 70 | 45 | 39.25 | 29.497 | 33.04 | 0.84170 |
| ABS | 70 | 60 | 39.25 | 29.497 | 33.04 | 0.84170 |
| ABS | 70 | 90 | 39.25 | 29.483 | 33.02 | 0.84130 |
| PLA | 70 | 0 | 39.25 | 28.815 | 33.71 | 0.85894 |
| PLA | 70 | 30 | 39.25 | 29.498 | 34.51 | 0.87930 |
| PLA | 70 | 45 | 39.25 | 29.497 | 34.51 | 0.87927 |
| PLA | 70 | 60 | 39.25 | 29.497 | 34.51 | 0.87927 |
| PLA | 70 | 90 | 39.25 | 29.483 | 34.50 | 0.87886 |
| TPU | 70 | 0 | 39.25 | 28.815 | 35.15 | 0.89565 |
| TPU | 70 | 30 | 39.25 | 29.498 | 35.99 | 0.91688 |
| TPU | 70 | 45 | 39.25 | 29.497 | 35.99 | 0.91685 |
| TPU | 70 | 60 | 39.25 | 29.497 | 35.99 | 0.91685 |
| TPU | 70 | 90 | 39.25 | 29.483 | 35.97 | 0.91641 |
| ABS | 90 | 0 | 39.25 | 35.651 | 39.93 | 1.01730 |
| ABS | 90 | 30 | 39.25 | 36.013 | 40.33 | 1.02763 |
| ABS | 90 | 45 | 39.25 | 36.013 | 40.33 | 1.02763 |
| ABS | 90 | 60 | 39.25 | 36.013 | 40.33 | 1.02763 |
| ABS | 90 | 90 | 39.25 | 36.011 | 40.33 | 1.02758 |
| PLA | 90 | 0 | 39.25 | 35.651 | 41.71 | 1.06272 |
| PLA | 90 | 30 | 39.25 | 36.013 | 42.14 | 1.07351 |
| PLA | 90 | 45 | 39.25 | 36.013 | 42.14 | 1.07351 |
| PLA | 90 | 60 | 39.25 | 36.013 | 42.14 | 1.07351 |
| PLA | 90 | 90 | 39.25 | 36.011 | 42.13 | 1.07345 |
| TPU | 90 | 0 | 39.25 | 35.651 | 43.49 | 1.10813 |
| TPU | 90 | 30 | 39.25 | 36.013 | 43.94 | 1.11938 |
| TPU | 90 | 45 | 39.25 | 36.013 | 43.94 | 1.11938 |
| TPU | 90 | 60 | 39.25 | 36.013 | 43.94 | 1.11938 |
| TPU | 90 | 90 | 39.25 | 36.011 | 43.93 | 1.11932 |
| Varying Infill Density at Constant Phase Angle | |||
|---|---|---|---|
| Material | Phase Angle, (°) | p-Value | Statistical Significance |
| ABS | 0 | 0.000184 | Yes |
| ABS | 30 | 0.001226 | Yes |
| ABS | 45 | 0.001219 | Yes |
| ABS | 60 | 0.000199 | Yes |
| ABS | 90 | 0.001226 | Yes |
| PLA | 0 | 0.000431 | Yes |
| PLA | 30 | 0.002435 | Yes |
| PLA | 45 | 0.002435 | Yes |
| PLA | 60 | 0.002435 | Yes |
| PLA | 90 | 0.002406 | Yes |
| TPU | 0 | 0.000420 | Yes |
| TPU | 30 | 0.002388 | Yes |
| TPU | 45 | 0.000567 | Yes |
| TPU | 60 | 0.002377 | Yes |
| TPU | 90 | 0.002350 | Yes |
| Varying Phase Angle at Constant Infill Density | |||
| Material | Infill Density, % | p-Value | Statistical Significance |
| ABS | 30 | 0.986465 | No |
| ABS | 50 | 0.998844 | No |
| ABS | 70 | 0.994958 | No |
| ABS | 90 | 0.996336 | No |
| PLA | 30 | 0.987389 | No |
| PLA | 50 | 0.998844 | No |
| PLA | 70 | 0.995209 | No |
| PLA | 90 | 0.997087 | No |
| TPU | 30 | 0.987771 | No |
| TPU | 50 | 0.998844 | No |
| TPU | 70 | 0.994958 | No |
| TPU | 90 | 0.991924 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lopez, T.B.; Cabalhug, J.H.; Arriola, E.; Afable, M.L.; Lorenzo, R.J.W.; Fronda, G.B.; Mecarandayo, P.; Santos, G.N.; Advincula, R.; Astronomo, A.; et al. Radiation Attenuation Calculation of 3D-Printed Polymers Across Variable Infill Densities and Phase Angles for Nuclear Medicine Applications. Polymers 2026, 18, 49. https://doi.org/10.3390/polym18010049
Lopez TB, Cabalhug JH, Arriola E, Afable ML, Lorenzo RJW, Fronda GB, Mecarandayo P, Santos GN, Advincula R, Astronomo A, et al. Radiation Attenuation Calculation of 3D-Printed Polymers Across Variable Infill Densities and Phase Angles for Nuclear Medicine Applications. Polymers. 2026; 18(1):49. https://doi.org/10.3390/polym18010049
Chicago/Turabian StyleLopez, Toni Beth, James Harold Cabalhug, Emmanuel Arriola, Marynella Laica Afable, Ranier Jude Wendell Lorenzo, Glenn Bryan Fronda, Patrick Mecarandayo, Gil Nonato Santos, Rigoberto Advincula, Alvie Astronomo, and et al. 2026. "Radiation Attenuation Calculation of 3D-Printed Polymers Across Variable Infill Densities and Phase Angles for Nuclear Medicine Applications" Polymers 18, no. 1: 49. https://doi.org/10.3390/polym18010049
APA StyleLopez, T. B., Cabalhug, J. H., Arriola, E., Afable, M. L., Lorenzo, R. J. W., Fronda, G. B., Mecarandayo, P., Santos, G. N., Advincula, R., Astronomo, A., & Alvarez, M. J. (2026). Radiation Attenuation Calculation of 3D-Printed Polymers Across Variable Infill Densities and Phase Angles for Nuclear Medicine Applications. Polymers, 18(1), 49. https://doi.org/10.3390/polym18010049
























