Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical–Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chitosan Characterization
2.2.1. Molecular Weight
2.2.2. Deacetylation Degree
2.2.3. Moisture
2.2.4. Ash
2.2.5. Chloride
2.2.6. Protein
2.2.7. Metals
2.3. Film Preparation
2.4. Film Characterization
2.4.1. Thickness
2.4.2. Swelling and Mass Loss in PBS
2.4.3. Contact Angle
2.5. Antibiotic Release in PBS
2.6. Antibacterial Activity
2.6.1. Bacteria Stock Preparation
2.6.2. Indirect Antibacterial Activity over Time
2.7. Biocompatibility
2.7.1. Cell Culture
2.7.2. Indirect Cytotoxicity Assay
2.7.3. Hemolysis Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chitosan Properties
3.2. Film Characterization
3.3. Antibiotic Release
3.4. Antibacterial Activity Results
3.5. Biocompatibility Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ye, Y.; Wang, J.; Zhang, T.; Jiang, S.; Han, X. Functionalization of Chitosan and Its Application in Flame Retardants: A Review. Int. J. Biol. Macromol. 2025, 295, 139615. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. “The Good, the Bad and the Ugly” of Chitosans. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Chevallier, P.; Wiggers, H.J.; Copes, F.; Zorzi Bueno, C.; Mantovani, D. Prolonged Antibacterial Activity in Tannic Acid-Iron Complexed Chitosan Films for Medical Device Applications. Nanomaterials 2023, 13, 484. [Google Scholar] [CrossRef]
- Gull, N.; Khan, S.M.; Zahid Butt, M.T.; Khalid, S.; Shafiq, M.; Islam, A.; Asim, S.; Hafeez, S.; Khan, R.U. In Vitro Study of Chitosan-Based Multi-Responsive Hydrogels as Drug Release Vehicles: A Preclinical Study. RSC Adv. 2019, 9, 31078–31091. [Google Scholar] [CrossRef]
- Othman, S.I.; Alturki, A.M.; Abu-Taweel, G.M.; Altoom, N.G.; Allam, A.A.; Abdelmonem, R. Chitosan for Biomedical Applications, Promising Antidiabetic Drug Delivery System, and New Diabetes Mellitus Treatment Based on Stem Cell. Int. J. Biol. Macromol. 2021, 190, 417–432. [Google Scholar] [CrossRef]
- Zavareh, H.S.; Pourmadadi, M.; Moradi, A.; Yazdian, F.; Omidi, M. Chitosan/Carbon Quantum Dot/Aptamer Complex as a Potential Anticancer Drug Delivery System towards the Release of 5-Fluorouracil. Int. J. Biol. Macromol. 2020, 165, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.L.; Park, I.K.; Shin, N.R.; Kang, S.G.; Yoo, H.S.; Kim, S.I.; Suh, S.B.; Akaike, T.; Cho, C.S. In Vitro Study of the Immune Stimulating Activity of an Athrophic Rhinitis Vaccine Associated to Chitosan Microspheres. Eur. J. Pharm. Biopharm. 2004, 58, 471–476. [Google Scholar] [CrossRef]
- Şenel, S. Current Status and Future of Chitosan in Drug and Vaccine Delivery. React. Funct. Polym. 2020, 147, 104452. [Google Scholar] [CrossRef]
- Amirian, J.; Zeng, Y.; Shekh, M.I.; Sharma, G.; Stadler, F.J.; Song, J.; Du, B.; Zhu, Y. In-Situ Crosslinked Hydrogel Based on Amidated Pectin/Oxidized Chitosan as Potential Wound Dressing for Skin Repairing. Carbohydr. Polym. 2021, 251, 117005. [Google Scholar] [CrossRef]
- Hassan, M.A.; Tamer, T.M.; Valachová, K.; Omer, A.M.; El-Shafeey, M.; Mohy Eldin, M.S.; Šoltés, L. Antioxidant and Antibacterial Polyelectrolyte Wound Dressing Based on Chitosan/Hyaluronan/Phosphatidylcholine Dihydroquercetin. Int. J. Biol. Macromol. 2021, 166, 18–31. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Owczarek, A.; Nadolna, K.; Sionkowska, A. The Film-Forming Properties of Chitosan with Tannic Acid Addition. Mater. Lett. 2019, 245, 22–24. [Google Scholar] [CrossRef]
- Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and Characterization of Chitosan-g-Poly(Ethylene Glycol)-Folate as a Non-Viral Carrier for Tumor-Targeted Gene Delivery. Biomaterials 2007, 28, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Kritchenkov, A.S.; Andranovitš, S.; Skorik, Y.A. Chitosan and Its Derivatives: Vectors in Gene Therapy. Russ. Chem. Rev. 2017, 86, 231–239. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, C.; Zhang, Z.; Liu, K.L.; Chen, J.; Li, J. Chitosan-Graft-(PEI-β-Cyclodextrin) Copolymers and Their Supramolecular PEGylation for DNA and SiRNA Delivery. Biomaterials 2011, 32, 8328–8341. [Google Scholar] [CrossRef]
- Kavya, K.C.; Jayakumar, R.; Nair, S.; Chennazhi, K.P. Fabrication and Characterization of Chitosan/Gelatin/NSiO2 Composite Scaffold for Bone Tissue Engineering. Int. J. Biol. Macromol. 2013, 59, 255–263. [Google Scholar] [CrossRef]
- Khalili, R.; Zarrintaj, P.; Jafari, S.H.; Vahabi, H.; Saeb, M.R. Electroactive Poly (p-Phenylene Sulfide)/r-Graphene Oxide/Chitosan as a Novel Potential Candidate for Tissue Engineering. Int. J. Biol. Macromol. 2020, 154, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.W.; Huang, D.M.; Chang, W.H.; Huang, R.N.; Hsu, J.C. Evaluation of Gelatin Hydrogel Crosslinked with Various Crosslinking Agents as Bioadhesives: In Vitro Study. J. Biomed. Mater. Res. 1999, 46, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Bezrodnykh, E.A.; Vyshivannaya, O.V.; Polezhaev, A.V.; Abramchuk, S.S.; Blagodatskikh, I.V.; Tikhonov, V.E. Residual Heavy Metals in Industrial Chitosan: State of Distribution. Int. J. Biol. Macromol. 2020, 155, 979–986. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; D’Amora, U.; Zasada, L.; Michalska-Sionkowska, M.; Miłek, O.; Łukowicz, K.; Osyczka, A.M. Enhancing Thin Film Properties of Chitosan–Collagen Biocomposites Through Potassium Silicate and Tannic Acid Integration. Polymers 2025, 17, 608. [Google Scholar] [CrossRef]
- Mohite, P.; Puri, A.; Munde, S.; Dave, R.; Khan, S.; Patil, R.; Singh, A.K.; Tipduangta, P.; Singh, S.; Chittasupho, C. Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review. Polymers 2025, 17, 435. [Google Scholar] [CrossRef]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef]
- Szymańska, E.; Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Som, C.; Schmutz, M.; Borges, O.; Borchard, G. How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Front. Bioeng. Biotechnol. 2020, 8, 165. [Google Scholar] [CrossRef]
- Honary, S.; Hoseinzadeh, B.; Shalchian, P. The Effect of Polymer Molecular Weight on Citrate Crosslinked Chitosan Films for Site-Specific Delivery of a Non-Polar Drug. Trop. J. Pharm. Res. 2010, 9, 525–531. [Google Scholar] [CrossRef]
- Weinhold, M.X.; Sauvageau, J.C.M.; Keddig, N.; Matzke, M.; Tartsch, B.; Grunwald, I.; Kübel, C.; Jastorff, B.; Thöming, J. Strategy to Improve the Characterization of Chitosan for Sustainable Biomedical Applications: SAR Guided Multi-Dimensional Analysis. Green Chem. 2009, 11, 498–509. [Google Scholar] [CrossRef]
- Xie, H.; Ouyang, K.; Zhang, L.; Hu, J.; Huang, S.; Sun, W.; Xiong, H.; Zhao, Q. Chitosan/Rice Hydrolysate/Curcumin Composite Film: Effect of Chitosan Molecular Weight. Int. J. Biol. Macromol. 2022, 210, 53–62. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Chen, X.G.; Kong, M.; Liu, C.S.; Cha, D.S.; Kennedy, J.F. Effect of Molecular Weight and Degree of Chitosan Deacetylation on the Preparation and Characteristics of Chitosan Thermosensitive Hydrogel as a Delivery System. Carbohydr. Polym. 2008, 73, 265–273. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef]
- Wiggers, H.J.; Chevallier, P.; Copes, F.; Simch, F.H.; da Silva Veloso, F.; Genevro, G.M.; Mantovani, D. Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Front. Bioeng. Biotechnol. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- SIGMA-ALDRICH. Available online: https://www.sigmaaldrich.com/BR/en (accessed on 23 January 2025).
- ASTM F2103; Standard Guide for Characterization and Testing of Chitosan Salts as Starting Materials Intended for Use in Biomedical and Tissue-Engineered Medical Product Applications. ASTM International: West Conshohocken, PA, USA, 2018.
- Takarina, N.D.; Indah, A.B.; Nasrul, A.A.; Nurmarina, A.; Saefumillah, A.; Fanani, A.A.; Loka, K.D.P. Optimisation of Deacetylation Process for Chitosan Production from Red Snapper (Lutjanus sp.) Scale Wastes. J. Phys. Conf. Ser. 2017, 812, 1–5. [Google Scholar] [CrossRef]
- Nguyen, S.; Winnik, F.M.; Buschmann, M.D. Improved Reproducibility in the Determination of the Molecular Weight of Chitosan by Analytical Size Exclusion Chromatography. Carbohydr. Polym. 2009, 75, 528–533. [Google Scholar] [CrossRef]
- de Alvarenga, E.S.; Pereira de Oliveira, C.; Roberto Bellato, C. An Approach to Understanding the Deacetylation Degree of Chitosan. Carbohydr. Polym. 2010, 80, 1155–1160. [Google Scholar] [CrossRef]
- Iber, B.T.; Torsabo, D.; Chik, C.; Wahab, F.; Abdullah, S.; Abu Hassan, H.; Kasan, N. A Study on the Effects of Interfering with the Conventional Sequential Protocol for Chemical Isolation and Characterization of Chitosan from Biowaste of Giant Freshwater Prawn Macrobrachium Rosenbergii. Heliyon 2023, 9, e13970. [Google Scholar] [CrossRef]
- William, W.; Wid, N. Comparison of Extraction Sequence on Yield and Physico-Chemical Characteristic of Chitosan from Shrimp Shell Waste. J. Phys. Conf. Ser. 2019, 1358, 012002. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Dai, F.; Xia, W. Purification of Chitosan by Using Sol–Gel Immobilized Pepsin Deproteinization. Carbohydr. Polym. 2012, 88, 206–212. [Google Scholar] [CrossRef]
- Krake, S.; Conzelmann, C.; Heuer, S.; Dyballa, M.; Zibek, S.; Hahn, T. Production of Chitosan from Aspergillus Niger and Quantitative Evaluation of the Process Using Adapted Analytical Tools. Biotechnol. Bioprocess Eng. 2024, 29, 942–954. [Google Scholar] [CrossRef]
- ISO10993-5:2009; Biological evaluation of medical devices, Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- United States Pharmacopeial Convention. United States Pharmacopeia 41, National Formulary 36; USP: North Bethesda, MD, USA, 2018. [Google Scholar]
- Berth, G.; Dautzenberg, H. The Degree of Acetylation of Chitosans and Its Effect on the Chain Conformation in Aqueous Solution. Carbohydr. Polym. 2002, 47, 39–51. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Yang, Y.D.; Guo, X.M.; Chen, G.R. Effect of Molecular Weight and Degree of Deacetylation of Chitosan on Urea Adsorption Properties of Copper Chitosan. J. Appl. Polym. Sci. 2003, 89, 1520–1523. [Google Scholar] [CrossRef]
- Saenz-Mendoza, A.I.; Zamudio-Flores, P.B.; García-Anaya, M.C.; Velasco, C.R.; Acosta-Muñiz, C.H.; de Jesús Ornelas-Paz, J.; Hernández-González, M.; Vargas-Torres, A.; Aguilar-González, M.Á.; Salgado-Delgado, R. Characterization of Insect Chitosan Films from Tenebrio Molitor and Brachystola Magna and Its Comparison with Commercial Chitosan of Different Molecular Weights. Int. J. Biol. Macromol. 2020, 160, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of Chitosan: Material Characterization and in Vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Ghannam, H.E.; Talab, A.S.; Dolgano, N.V.; Husse, A.M.S.; Abdelmagui, N.M. Characterization of Chitosan Extracted from Different Crustacean Shell Wastes. J. Appl. Sci. 2016, 16, 454–461. [Google Scholar] [CrossRef]
- Dotto, G.L.; de Souza, V.C.; de Moura, J.M.; de Moura, C.M.; de Almeida Pinto, L.A. Influence of Drying Techniques on the Characteristics of Chitosan and the Quality of Biopolymer Films. Dry. Technol. 2011, 29, 1784–1791. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Nguyen, S.; Hisiger, S.; Jolicoeur, M.; Winnik, F.M.; Buschmann, M.D. Fractionation and Characterization of Chitosan by Analytical SEC and 1H NMR after Semi-Preparative SEC. Carbohydr. Polym. 2009, 75, 636–645. [Google Scholar] [CrossRef]
- Sarkar, T.; Alam, M.M.; Parvin, N.; Fardous, Z.; Chowdhury, A.Z.; Hossain, S.; Haque, M.E.; Biswas, N. Assessment of Heavy Metals Contamination and Human Health Risk in Shrimp Collected from Different Farms and Rivers at Khulna-Satkhira Region, Bangladesh. Toxicol. Reports 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. EXS 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Jiang, W. Analysis of Film-Forming Properties of Chitosan with Different Molecular Weights and Its Adhesion Properties with Different Postharvest Fruit Surfaces. Food Chem. 2022, 395, 133605. [Google Scholar] [CrossRef] [PubMed]
- Andonegi, M.; Heras, K.L.; Santos-Vizcaíno, E.; Igartua, M.; Hernandez, R.M.; de la Caba, K.; Guerrero, P. Structure-Properties Relationship of Chitosan/Collagen Films with Potential for Biomedical Applications. Carbohydr. Polym. 2020, 237, 116159. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.H.; Mahdavinia, G.R.; Massoumi, B. PH-Controlled Sunitinib Anticancer Release from Magnetic Chitosan Nanoparticles Crosslinked with κ-Carrageenan. Mater. Sci. Eng. C 2018, 91, 705–714. [Google Scholar] [CrossRef]
- Hsu, S.H.; Whu, S.W.; Tsai, C.L.; Wu, Y.H.; Chen, H.W.; Hsieh, K.H. Chitosan as Scaffold Materials: Effects of Molecular Weight and Degree of Deacetylation. J. Polym. Res. 2004, 11, 141–147. [Google Scholar] [CrossRef]
- EUCAST Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method Version 8.0 January. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 3 September 2024).
- Abedia, Z.; Moghadamnia, A.A.; Zabihi, E.; Pourbagher, R.; Ghasemi, M.; Nouri, H.R.; Tashakorian, H.; Jenabian, N. Anticancer Properties of Chitosan against Osteosarcoma, Breast Cancer and Cervical Cancer Cell Lines. Casp. J. Intern. Med. 2019, 10, 439–446. [Google Scholar] [CrossRef]
- ASTM F756-17; Standard Practice for Assessment of Hemolytic Properties of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
Supplier | Chitosan | Viscosity (cP) | DDA (%) |
---|---|---|---|
Sigma | C1 | 331 | ≥75% |
Chitolytic | C2 | 75 | ≥90% |
Zhejiang | C3 | 36 | ≥95% |
Fingres | C4 | 138 | ≥95% |
Quitomax | C5 | 308 | ≥75% |
Jiangsu | C6 | 1100 | ≥75% |
Chitosan | MW (kg/mol) | MN (kg/mol) | PDI | DDA (%) |
---|---|---|---|---|
C1 * | 217 ± 7 b | 165 ± 4 b | 1.3 ± 0.1 a | 82.2 ± 1.2 a |
C2 | 110 ± 2 a | 63 ± 4 a | 1.8 ± 0.1 a | 91.9 ± 2.1 b |
C3 | 114 ± 3 a | 76 ± 3 a | 1.6 ± 0.1 a | 94.7 ± 0.1 b |
C4 | 193 ± 7 b | 138 ± 17 b | 1.4 ± 0.1 a | 90.6 ± 2.0 b |
C5 | 201 ± 3 b | 113 ± 18 ab | 1.8 ± 0.3 a | 83.5 ± 1.2 a |
C6 | 341 ± 17 c | 230 ± 13 c | 1.5 ± 0.1 a | 83.7 ± 2.9 a |
Chitosan | Moisture (%) | Ash (%) | Cl− (%) |
---|---|---|---|
C1 | 9.14 ± 0.15 a | 1.37 ± 0.03 a | 0.88 ± 0.18 ab |
C2 | 7.04 ± 0.19 c | 0.89 ± 0.15 c | 0.35 ± 0.18 c |
C3 | 11.69 ± 0.48 b | 0.63 ± 0.06 b | 1.00 ± 0.10 ab |
C4 | 8.99 ± 0.22 a | 1.34 ± 0.16 a | 1.18 ± 0.10 b |
C5 | 11.59 ± 0.21 b | 1.49 ± 0.02 a | 0.77 ± 0.10 a |
C6 | 8.81 ± 0.18 a | 0.78 ± 0.04 bc | 0.30 ± 0.10 c |
Chitosan | As | Cd | Co | Cr | Cu | Hg | Ni | Pb | Sn |
---|---|---|---|---|---|---|---|---|---|
C1 | nd | nd | nd | nd | 5.0 ± 2.6 | nd | 5.9 ± 0.9 | nd | nd |
C2 | nd | nd | nd | nd | 1.1 ± 0.2 | nd | 13.0 ± 3.0 | nd | nd |
C3 | nd | nd | nd | nd | 5.3 ± 0.9 | nd | 8.7 ± 1.3 | nd | nd |
C4 | nd | nd | nd | nd | 2.8 ± 0.1 | nd | 14.3 ± 0.2 | nd | nd |
C5 | nd | nd | 0.1 ± 0.1 | nd | 11.7 ± 0.1 | nd | 16.0 ± 0.2 | nd | nd |
C6 | nd | nd | 0.1 ± 0.1 | nd | 1.3 ± 0.1 | nd | 8.2 ± 1.1 | nd | nd |
Chitosan | Thickness (µm) | Swelling (%) | Mass Loss (%) | Contact Angle (°) |
---|---|---|---|---|
C1 | 19.8 ± 2.2 a | 126 ± 14 a | 26.7 ± 0.7 ab | 96 ± 2 a |
C2 | 21.4 ± 2.4 a | 121 ± 10 a | 28.7 ± 1.6 b | 95 ± 3 a |
C3 | 22.2 ± 1.5 a | 104 ± 11 a | 23.7 ± 3.0 ab | 96 ± 2 a |
C4 | 22.0 ± 2.0 a | 123 ± 3 a | 21.9 ± 2.9 a | 100 ± 1 a |
C5 | 20.8 ± 1.8 a | 104 ± 11 a | 21.1 ± 3.1 a | 97 ± 3 a |
C6 | 22.4 ± 1.1 a | 206 ± 28 b | 29.6 ± 1.6 b | 96 ± 1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampim, I.T.; Wiggers, H.J.; Bueno, C.Z.; Chevallier, P.; Copes, F.; Mantovani, D. Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical–Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents. Polymers 2025, 17, 884. https://doi.org/10.3390/polym17070884
Rampim IT, Wiggers HJ, Bueno CZ, Chevallier P, Copes F, Mantovani D. Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical–Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents. Polymers. 2025; 17(7):884. https://doi.org/10.3390/polym17070884
Chicago/Turabian StyleRampim, Isabela Tavares, Helton José Wiggers, Cecilia Zorzi Bueno, Pascale Chevallier, Francesco Copes, and Diego Mantovani. 2025. "Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical–Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents" Polymers 17, no. 7: 884. https://doi.org/10.3390/polym17070884
APA StyleRampim, I. T., Wiggers, H. J., Bueno, C. Z., Chevallier, P., Copes, F., & Mantovani, D. (2025). Sourcing Interchangeability in Commercial Chitosan: Focus on the Physical–Chemical Properties of Six Different Products and Their Impact on the Release of Antibacterial Agents. Polymers, 17(7), 884. https://doi.org/10.3390/polym17070884