The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khurshid, Z. Digital Dentistry: Transformation of Oral Health and Dental Education with Technology. Eur. J. Dent. 2023, 17, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S. Digital dentistry: An overview and future prospects. Br. Dent. J. 2024, 237, 22. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; He, J.; Li, Y.; Li, C.; Lin, Z.; Wu, H.; Zhou, L. The application of 3D printing in dentistry: A bibliometric analysis from 2012 to 2023. J. Prosthet. Dent. 2024, in press. [CrossRef] [PubMed]
- Alfaraj, A.; Su, F.Y.; Lin, W.S. CAD-CAM Hollow Obturator Prosthesis: A Technical Report. J. Prosthodont. 2022, 31, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Alfaraj, A.; Yang, C.C.; Levon, J.A. The trueness of obturator prosthesis base manufactured by conventional and 3D printing techniques. J. Prosthodont. 2022, 31, 221–227. [Google Scholar] [CrossRef]
- Al-Qarni, F.D.; Gad, M.M. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials 2022, 15, 2410. [Google Scholar] [CrossRef]
- Mohapatra, S. Sterilization and Disinfection. In Essentials of Neuroanesthesia; Academic Press: Cambridge, MA, USA, 2017; pp. 929–944. [Google Scholar]
- Münker, T.J.A.G.; van de Vijfeijken, S.E.C.M.; Mulder, C.S.; Vespasiano, V.; Becking, A.G.; Kleverlaan, C.J.; Dubois, L.; Karssemakers, L.H.E.; Milstein, D.M.J.; Depauw, P.R.A.M.; et al. Effects of sterilization on the mechanical properties of poly(methyl methacrylate) based personalized medical devices. J. Mech. Behav. Biomed. Mater. 2018, 81, 168–172. [Google Scholar] [CrossRef]
- Silindir, M.; Özer, A.Y. Sterilization methods and the comparison of E-Beam sterilization with gamma radiation sterilization. FABAD. J. Pharm. Sci. 2009, 34, 43–53. [Google Scholar]
- Panta, G.; Richardson, A.K.; Shaw, I.C.; Coope, P.A. Compliance of primary and secondary care public hospitals with standard practices for reprocessing and steam sterilization of reusable medical devices in Nepal: Findings from nation-wide multicenter clustered audits. BMC Health Serv. Res. 2020, 20, 923. [Google Scholar] [CrossRef]
- Sharifi, S.; Islam, M.M.; Sharifi, H.; Islam, R.; Huq, T.N.; Nilsson, P.H.; Mollnes, T.E.; Tran, K.D.; Patzer, C.; Dohlman, C.H.; et al. Electron Beam Sterilization of Poly(Methyl Methacrylate)-Physicochemical and Biological Aspects. Macromol. Biosci. 2021, 21, e2000379. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Faltermeier, A.; Handel, G. Electron beam irradiation of denture base materials. J. Mater. Sci. Mater. Med. 2005, 16, 175–181. [Google Scholar] [CrossRef]
- Livne, Z.; Haruvy, Y.; Lao, N.; Ryeom, M.; Mueller, E.P. Radiation induced sterilization of polymeric materials for medical implants-radiation-induced damage in irradiated polymethylmethacrylate. Radiat. Phys. Chem. 1991, 38, 565–572. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Infection control: The role of disinfection and sterilization. J. Hosp. Infect. 1999, 43, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Rogers, W. Sterilization of Polymer Healthcare Products; Rapra Technology: Shrewsbury, UK, 2005. [Google Scholar]
- Govindaraj, S.; Muthuraman, M.S. Systematic Review on Sterilization Methods of Implants and Medical Devices. Int. J. Chemtech Res. 2015, 8, 974–4290. [Google Scholar]
- Urano, S.; Wakamoto, I.; Yamakawa, T. Electron Beam Sterilization System. Mitsubishi Heavy Ind. Tech. Rev. 2003, 40, 1–5. [Google Scholar]
- Panta, G.; Richardson, A.K.; Shaw, I.C. Effectiveness of autoclaving in sterilizing reusable medical devices in healthcare facilities. J. Infect. Dev. Ctries. 2019, 13, 858–864. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Sterilization of 20 billion medical devices by ethylene oxide (ETO): Consequences of ETO closures and alternative sterilization technologies/solutions. Am. J. Infect. Control 2023, 51, A82–A95. [Google Scholar] [CrossRef]
- Shintani, H. Ethylene Oxide Gas Sterilization of Medical Devices. Biocontrol Sci. 2017, 22, 1–16. [Google Scholar] [CrossRef]
- Mendes, G.C.C.; Brandão, T.R.S.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef]
- Głuszewski, W. From radiation sterilization to polymer modification. PTJ 2023, 3, 21–27. [Google Scholar]
- Głuszewski, W. Unique features of radiation sterilization and hygienization technologies. Hygeia Public Health 2021, 56, 24–30. [Google Scholar]
- Głuszewski, W.; Zagórski, Z.P.; Tran, Q.K.; Cortella, L. Maria Skłodowska Curie–the precursor of radiation sterilization methods. Anal. Bioanal. Chem. 2011, 400, 1577–1582. [Google Scholar] [CrossRef]
- Kashiwagi, M.; Hoshi, Y. Electron beam Processing System and Its Application. SEI Tech. Rev. 2012, 75, 47–54. [Google Scholar]
- Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Bednarik, M.; Pata, V.; Ovsik, M.; Mizera, A.; Husar, J.; Manas, M.; Hanzlik, J.; Karhankova, M. The Modification of Useful Injection-Molded Parts’ Properties Induced Using High-Energy Radiation. Polymers 2024, 16, 450. [Google Scholar] [CrossRef]
- Tatara, A.M.; Shah, S.R.; Sotoudeh, M.; Henslee, A.M.; Wong, M.E.; Ratcliffe, A.; Kasper, F.K.; Mikos, A.G. Effects of Electron Beam Sterilization on Mechanical Properties of a Porous Polymethylmethacrylate Space Maintenance Device. J. Med. Devices. 2015, 9, 024501. [Google Scholar] [CrossRef]
- Zimek, Z.; Waliś, L.; Chmielewski, A.G. EB Industrial Facility for Radiation Sterilization of Medical Devices. Radiat. Phys. Chem. 1993, 42, 571–572. [Google Scholar] [CrossRef]
- Graham, J.; Pruitt, L.; Ries, M.; Gundiah, N. Fracture and fatigue properties of acrylic bone cement: The effects of mixing method, sterilization treatment, and molecular weight. J. Arthroplast. 2000, 15, 1028–1035. [Google Scholar] [CrossRef]
- Boyd, C. E-Beam Sterilizes the Industry. J. Stud. Res. 2002, 3, 9–43. [Google Scholar]
- Cho, S.O.; Jun, H.Y. Surface Hardening of Poly (Methyl Methacrylate) by Electron Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 237, 525–532. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.P.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S.T. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and surface properties of a 3D-printed denture base polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2023, 32, 40–48. [Google Scholar] [CrossRef]
- Sakurabayashi, Y.; Masaki, T.; Iwao, T.; Yumoto, M. Surface Hardness Improvement of PMMA by Low-Energy Ion Irradiation and Electron Irradiation. Electron. Commun. Jpn. 2011, 94, 19–26. [Google Scholar] [CrossRef]
- Yavuz, C.; Oliaei, S.N.B.; Cetin, B.; Yesil-Celiktas, O. Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics. J. Supercrit. Fluids 2016, 107, 114–121. [Google Scholar] [CrossRef]
- Lee, E.H.; Rao, G.R.; Mansur, L.K. LET Effect on Cross-Linking and Scission Mechanisms of PMMA During Irradiation. Radiat. Phys. Chem. 1999, 55, 293–305. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Lemon, M.T.; Jones, M.S.; Stansbury, J.W. Hydrogen bonding interactions in methacrylate monomers and polymers. J. Biomed. Mater. Res. A. 2007, 83, 734–746. [Google Scholar] [CrossRef]
- Gajewski, V.E.; Pfeifer, C.S.; Froes-Salgado, N.R.; Boaro, L.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef]
- Goncalves, F.; Kawano, Y.; Pfeifer, C.; Stansbury, J.W.; Braga, R.R. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur. J. Oral. Sci. 2009, 117, 442–446. [Google Scholar] [CrossRef]
- Yazigi, C.; Chaar, M.S.; Busch, R.; Kern, M. The Effect of Sterilization on the Accuracy and Fit of 3D-Printed Surgical Guides. Materials 2023, 16, 5305. [Google Scholar] [CrossRef] [PubMed]
- Török, G.; Gombocz, P.; Bognár, E.; Nagy, P.; Dinya, E.; Kispélyi, B.; Hermann, P. Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy—Pilot study. BMC Oral Health 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.F.; Alshaia, A.; Alarifi, S.; Almasoud, N.; Abdelhady, A. Effect of steam heat sterilization on the accuracy of 3D printed surgical guides. Implant. Dent. 2019, 28, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Pop, S.I.; Dudescu, M.; Mihali, S.G.; Pacurar, M.; Bratu, D.C. Effects of disinfection and steam sterilization on the mechanical properties of 3D SLA- and DLP-printed surgical guides for orthodontic implant placement. Polymers 2022, 14, 2107. [Google Scholar] [CrossRef]
- Tangpothitham, S.; Pongprueksa, P.; Inokoshi, M.; Mitrirattanakul, S. Effect of post-polymerization with autoclaving treatment on monomer elution and mechanical properties of 3D-printing acrylic resin for splint fabrication. J. Mech. Behav. Biomed. Mater. 2022, 126, 105015. [Google Scholar] [CrossRef]
- Marturello, D.M.; Déjardin, L.M. Post-sterilization Dimensional Accuracy of Methacrylate Monomer Biocompatible Three-Dimensionally Printed Mock Surgical Guides. Vet. Comp. Orthop. Traumatol. 2023, 36, 279–286. [Google Scholar] [CrossRef]
- Sharma, N.; Cao, S.; Msallem, B.; Kunz, C.; Brantner, P.; Honigmann, P.; Thieringer, F.M. Effects of Steam Sterilization on 3D Printed Biocompatible Resin Materials for Surgical Guides—An Accuracy Assessment Study. J. Clin. Med. 2020, 9, 1506. [Google Scholar] [CrossRef]
Sterilization Method | Advantages | Disadvantages |
---|---|---|
Pressurized steam sterilization |
|
|
Ethylene oxide sterilization (ETO) |
|
|
Radiation sterilization |
|
|
Material | Manufacturer | Components |
---|---|---|
Denture 3D+ | NextDent, Netherlands |
|
Denturetec | Saremco, Switzerland |
|
Optiprint Laviva | Dentona, Germany |
|
Rapid Simplified | Vertex Dental, Netherlands |
|
Material | Manufacturer | Specification |
---|---|---|
Denture 3D+ | NextDent, Netherlands |
|
Denturetec | Saremco, Switzerland |
|
Optiprint Laviva | Dentona, Germany |
|
Rapid Simplified | Vertex Dental, Netherlands |
|
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.029 | 0.025 | 0.010 | 27.131 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.004 | 0.031 | 0.029 | 0.003 | 0.029 | 0.028 | 0.003 | 0.112 | 0.104 | 0.033 | 29.048 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 86.43 | 86.40 | 0.22 | 86.38 | 86.40 | 0.22 | 86.49 | 86.58 | 0.16 | 80.44 | 81.54 | 2.85 | 25.824 | <0.001 *** | 1, 2, 3 > 4 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.009 | 0.009 | 0.001 | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.033 | 0.026 | 0.016 | 35.636 | <0.001 *** | 4 > 2, 3, 1 > 3 |
impact strength (J/cm2) | 0.036 | 0.036 | 0.005 | 0.030 | 0.029 | 0.004 | 0.027 | 0.028 | 0.002 | 0.132 | 0.103 | 0.059 | 33.731 | <0.001 *** | 4 > 2, 3, 1 > 3 |
angle [°] | 85.95 | 86.04 | 0.33 | 86.42 | 86.40 | 0.24 | 84.97 | 86.58 | 5.41 | 79.04 | 81.00 | 4.43 | 29.692 | <0.001 *** | 1, 2 > 4, 1 > 3 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.009 | 0.009 | 0.002 | 0.009 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 0.036 | 0.030 | 0.013 | 29.973 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.038 | 0.036 | 0.006 | 0.035 | 0.034 | 0.003 | 0.032 | 0.033 | 0.004 | 0.141 | 0.126 | 0.044 | 28.283 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 85.87 | 85.95 | 0.41 | 86.07 | 86.13 | 0.19 | 86.27 | 86.31 | 0.21 | 78.23 | 80.10 | 3.65 | 29.223 | <0.001 *** | 1, 2, 3 > 4 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.000 | 0.030 | 0.028 | 0.011 | 27.615 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.031 | 0.032 | 0.002 | 0.032 | 0.033 | 0.004 | 0.033 | 0.032 | 0.002 | 0.120 | 0.112 | 0.043 | 28.680 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 86.33 | 86.31 | 0.09 | 86.29 | 86.31 | 0.24 | 86.26 | 86.31 | 0.12 | 79.92 | 80.55 | 3.11 | 26.088 | <0.001 *** | 1, 2, 3 > 4 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.009 | 0.009 | 0.001 | 0.009 | 0.009 | 0.002 | 0.008 | 0.008 | 0.001 | 19.298 | <0.001 *** | 3 > 1, 4, 2 > 1 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.004 | 0.036 | 0.036 | 0.005 | 0.038 | 0.036 | 0.006 | 0.031 | 0.032 | 0.002 | 17.745 | <0.001 *** | 2, 3 > 4 |
angle [°] | 86.43 | 86.40 | 0.22 | 85.95 | 86.04 | 0.33 | 85.87 | 85.95 | 0.41 | 86.33 | 86.31 | 0.09 | 21.257 | <0.001 *** | 1, 4 > 2, 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.009 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 12.916 | 0.005 ** | 3 > 1, 2 |
impact strength (J/cm2) | 0.031 | 0.029 | 0.003 | 0.030 | 0.029 | 0.004 | 0.035 | 0.034 | 0.003 | 0.032 | 0.033 | 0.004 | 14.018 | 0.003 ** | 3 > 1, 2 |
angle [°] | 86.38 | 86.40 | 0.22 | 86.42 | 86.40 | 0.24 | 86.07 | 86.13 | 0.19 | 86.29 | 86.31 | 0.24 | 12.548 | 0.006 ** | 1, 2 > 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.000 | 21.778 | <0.001 *** | 3, 4 > 2, 4 > 1 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.003 | 0.027 | 0.028 | 0.002 | 0.032 | 0.033 | 0.004 | 0.033 | 0.032 | 0.002 | 23.750 | <0.001 *** | 3, 4 > 2, 4 > 1 |
angle [°] | 86.49 | 86.58 | 0.16 | 84.97 | 86.58 | 5.41 | 86.27 | 86.31 | 0.21 | 86.26 | 86.31 | 0.12 | 17.804 | <0.001 *** | 1, 2 > 4, 2 > 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.029 | 0.025 | 0.010 | 0.033 | 0.026 | 0.016 | 0.036 | 0.030 | 0.013 | 0.030 | 0.028 | 0.011 | 2.802 | 0.423 | |
impact strength (J/cm2) | 0.112 | 0.104 | 0.033 | 0.132 | 0.103 | 0.059 | 0.141 | 0.126 | 0.044 | 0.120 | 0.112 | 0.043 | 2.819 | 0.420 | |
angle [°] | 80.44 | 81.54 | 2.85 | 79.04 | 81.00 | 4.43 | 78.23 | 80.10 | 3.65 | 79.92 | 80.55 | 3.11 | 2.973 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulska, A.; Mańka-Malara, K.; Krasowski, M.; Sokołowski, J.; Zwoliński, J.; Rafalski, A.; Kostrzewa-Janicka, J. The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers 2025, 17, 1279. https://doi.org/10.3390/polym17091279
Cybulska A, Mańka-Malara K, Krasowski M, Sokołowski J, Zwoliński J, Rafalski A, Kostrzewa-Janicka J. The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers. 2025; 17(9):1279. https://doi.org/10.3390/polym17091279
Chicago/Turabian StyleCybulska, Anna, Katarzyna Mańka-Malara, Michał Krasowski, Jerzy Sokołowski, Jakub Zwoliński, Andrzej Rafalski, and Jolanta Kostrzewa-Janicka. 2025. "The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators" Polymers 17, no. 9: 1279. https://doi.org/10.3390/polym17091279
APA StyleCybulska, A., Mańka-Malara, K., Krasowski, M., Sokołowski, J., Zwoliński, J., Rafalski, A., & Kostrzewa-Janicka, J. (2025). The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers, 17(9), 1279. https://doi.org/10.3390/polym17091279