The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khurshid, Z. Digital Dentistry: Transformation of Oral Health and Dental Education with Technology. Eur. J. Dent. 2023, 17, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S. Digital dentistry: An overview and future prospects. Br. Dent. J. 2024, 237, 22. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; He, J.; Li, Y.; Li, C.; Lin, Z.; Wu, H.; Zhou, L. The application of 3D printing in dentistry: A bibliometric analysis from 2012 to 2023. J. Prosthet. Dent. 2024, in press. [CrossRef] [PubMed]
- Alfaraj, A.; Su, F.Y.; Lin, W.S. CAD-CAM Hollow Obturator Prosthesis: A Technical Report. J. Prosthodont. 2022, 31, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Alfaraj, A.; Yang, C.C.; Levon, J.A. The trueness of obturator prosthesis base manufactured by conventional and 3D printing techniques. J. Prosthodont. 2022, 31, 221–227. [Google Scholar] [CrossRef]
- Al-Qarni, F.D.; Gad, M.M. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials 2022, 15, 2410. [Google Scholar] [CrossRef]
- Mohapatra, S. Sterilization and Disinfection. In Essentials of Neuroanesthesia; Academic Press: Cambridge, MA, USA, 2017; pp. 929–944. [Google Scholar]
- Münker, T.J.A.G.; van de Vijfeijken, S.E.C.M.; Mulder, C.S.; Vespasiano, V.; Becking, A.G.; Kleverlaan, C.J.; Dubois, L.; Karssemakers, L.H.E.; Milstein, D.M.J.; Depauw, P.R.A.M.; et al. Effects of sterilization on the mechanical properties of poly(methyl methacrylate) based personalized medical devices. J. Mech. Behav. Biomed. Mater. 2018, 81, 168–172. [Google Scholar] [CrossRef]
- Silindir, M.; Özer, A.Y. Sterilization methods and the comparison of E-Beam sterilization with gamma radiation sterilization. FABAD. J. Pharm. Sci. 2009, 34, 43–53. [Google Scholar]
- Panta, G.; Richardson, A.K.; Shaw, I.C.; Coope, P.A. Compliance of primary and secondary care public hospitals with standard practices for reprocessing and steam sterilization of reusable medical devices in Nepal: Findings from nation-wide multicenter clustered audits. BMC Health Serv. Res. 2020, 20, 923. [Google Scholar] [CrossRef]
- Sharifi, S.; Islam, M.M.; Sharifi, H.; Islam, R.; Huq, T.N.; Nilsson, P.H.; Mollnes, T.E.; Tran, K.D.; Patzer, C.; Dohlman, C.H.; et al. Electron Beam Sterilization of Poly(Methyl Methacrylate)-Physicochemical and Biological Aspects. Macromol. Biosci. 2021, 21, e2000379. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Faltermeier, A.; Handel, G. Electron beam irradiation of denture base materials. J. Mater. Sci. Mater. Med. 2005, 16, 175–181. [Google Scholar] [CrossRef]
- Livne, Z.; Haruvy, Y.; Lao, N.; Ryeom, M.; Mueller, E.P. Radiation induced sterilization of polymeric materials for medical implants-radiation-induced damage in irradiated polymethylmethacrylate. Radiat. Phys. Chem. 1991, 38, 565–572. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Infection control: The role of disinfection and sterilization. J. Hosp. Infect. 1999, 43, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Rogers, W. Sterilization of Polymer Healthcare Products; Rapra Technology: Shrewsbury, UK, 2005. [Google Scholar]
- Govindaraj, S.; Muthuraman, M.S. Systematic Review on Sterilization Methods of Implants and Medical Devices. Int. J. Chemtech Res. 2015, 8, 974–4290. [Google Scholar]
- Urano, S.; Wakamoto, I.; Yamakawa, T. Electron Beam Sterilization System. Mitsubishi Heavy Ind. Tech. Rev. 2003, 40, 1–5. [Google Scholar]
- Panta, G.; Richardson, A.K.; Shaw, I.C. Effectiveness of autoclaving in sterilizing reusable medical devices in healthcare facilities. J. Infect. Dev. Ctries. 2019, 13, 858–864. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Sterilization of 20 billion medical devices by ethylene oxide (ETO): Consequences of ETO closures and alternative sterilization technologies/solutions. Am. J. Infect. Control 2023, 51, A82–A95. [Google Scholar] [CrossRef]
- Shintani, H. Ethylene Oxide Gas Sterilization of Medical Devices. Biocontrol Sci. 2017, 22, 1–16. [Google Scholar] [CrossRef]
- Mendes, G.C.C.; Brandão, T.R.S.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef]
- Głuszewski, W. From radiation sterilization to polymer modification. PTJ 2023, 3, 21–27. [Google Scholar]
- Głuszewski, W. Unique features of radiation sterilization and hygienization technologies. Hygeia Public Health 2021, 56, 24–30. [Google Scholar]
- Głuszewski, W.; Zagórski, Z.P.; Tran, Q.K.; Cortella, L. Maria Skłodowska Curie–the precursor of radiation sterilization methods. Anal. Bioanal. Chem. 2011, 400, 1577–1582. [Google Scholar] [CrossRef]
- Kashiwagi, M.; Hoshi, Y. Electron beam Processing System and Its Application. SEI Tech. Rev. 2012, 75, 47–54. [Google Scholar]
- Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Bednarik, M.; Pata, V.; Ovsik, M.; Mizera, A.; Husar, J.; Manas, M.; Hanzlik, J.; Karhankova, M. The Modification of Useful Injection-Molded Parts’ Properties Induced Using High-Energy Radiation. Polymers 2024, 16, 450. [Google Scholar] [CrossRef]
- Tatara, A.M.; Shah, S.R.; Sotoudeh, M.; Henslee, A.M.; Wong, M.E.; Ratcliffe, A.; Kasper, F.K.; Mikos, A.G. Effects of Electron Beam Sterilization on Mechanical Properties of a Porous Polymethylmethacrylate Space Maintenance Device. J. Med. Devices. 2015, 9, 024501. [Google Scholar] [CrossRef]
- Zimek, Z.; Waliś, L.; Chmielewski, A.G. EB Industrial Facility for Radiation Sterilization of Medical Devices. Radiat. Phys. Chem. 1993, 42, 571–572. [Google Scholar] [CrossRef]
- Graham, J.; Pruitt, L.; Ries, M.; Gundiah, N. Fracture and fatigue properties of acrylic bone cement: The effects of mixing method, sterilization treatment, and molecular weight. J. Arthroplast. 2000, 15, 1028–1035. [Google Scholar] [CrossRef]
- Boyd, C. E-Beam Sterilizes the Industry. J. Stud. Res. 2002, 3, 9–43. [Google Scholar]
- Cho, S.O.; Jun, H.Y. Surface Hardening of Poly (Methyl Methacrylate) by Electron Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 237, 525–532. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.P.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S.T. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and surface properties of a 3D-printed denture base polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2023, 32, 40–48. [Google Scholar] [CrossRef]
- Sakurabayashi, Y.; Masaki, T.; Iwao, T.; Yumoto, M. Surface Hardness Improvement of PMMA by Low-Energy Ion Irradiation and Electron Irradiation. Electron. Commun. Jpn. 2011, 94, 19–26. [Google Scholar] [CrossRef]
- Yavuz, C.; Oliaei, S.N.B.; Cetin, B.; Yesil-Celiktas, O. Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics. J. Supercrit. Fluids 2016, 107, 114–121. [Google Scholar] [CrossRef]
- Lee, E.H.; Rao, G.R.; Mansur, L.K. LET Effect on Cross-Linking and Scission Mechanisms of PMMA During Irradiation. Radiat. Phys. Chem. 1999, 55, 293–305. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Lemon, M.T.; Jones, M.S.; Stansbury, J.W. Hydrogen bonding interactions in methacrylate monomers and polymers. J. Biomed. Mater. Res. A. 2007, 83, 734–746. [Google Scholar] [CrossRef]
- Gajewski, V.E.; Pfeifer, C.S.; Froes-Salgado, N.R.; Boaro, L.C.; Braga, R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef]
- Goncalves, F.; Kawano, Y.; Pfeifer, C.; Stansbury, J.W.; Braga, R.R. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur. J. Oral. Sci. 2009, 117, 442–446. [Google Scholar] [CrossRef]
- Yazigi, C.; Chaar, M.S.; Busch, R.; Kern, M. The Effect of Sterilization on the Accuracy and Fit of 3D-Printed Surgical Guides. Materials 2023, 16, 5305. [Google Scholar] [CrossRef] [PubMed]
- Török, G.; Gombocz, P.; Bognár, E.; Nagy, P.; Dinya, E.; Kispélyi, B.; Hermann, P. Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy—Pilot study. BMC Oral Health 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.F.; Alshaia, A.; Alarifi, S.; Almasoud, N.; Abdelhady, A. Effect of steam heat sterilization on the accuracy of 3D printed surgical guides. Implant. Dent. 2019, 28, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Pop, S.I.; Dudescu, M.; Mihali, S.G.; Pacurar, M.; Bratu, D.C. Effects of disinfection and steam sterilization on the mechanical properties of 3D SLA- and DLP-printed surgical guides for orthodontic implant placement. Polymers 2022, 14, 2107. [Google Scholar] [CrossRef]
- Tangpothitham, S.; Pongprueksa, P.; Inokoshi, M.; Mitrirattanakul, S. Effect of post-polymerization with autoclaving treatment on monomer elution and mechanical properties of 3D-printing acrylic resin for splint fabrication. J. Mech. Behav. Biomed. Mater. 2022, 126, 105015. [Google Scholar] [CrossRef]
- Marturello, D.M.; Déjardin, L.M. Post-sterilization Dimensional Accuracy of Methacrylate Monomer Biocompatible Three-Dimensionally Printed Mock Surgical Guides. Vet. Comp. Orthop. Traumatol. 2023, 36, 279–286. [Google Scholar] [CrossRef]
- Sharma, N.; Cao, S.; Msallem, B.; Kunz, C.; Brantner, P.; Honigmann, P.; Thieringer, F.M. Effects of Steam Sterilization on 3D Printed Biocompatible Resin Materials for Surgical Guides—An Accuracy Assessment Study. J. Clin. Med. 2020, 9, 1506. [Google Scholar] [CrossRef]
Sterilization Method | Advantages | Disadvantages |
---|---|---|
Pressurized steam sterilization |
|
|
Ethylene oxide sterilization (ETO) |
|
|
Radiation sterilization |
|
|
Material | Manufacturer | Components |
---|---|---|
Denture 3D+ | NextDent, Netherlands |
|
Denturetec | Saremco, Switzerland |
|
Optiprint Laviva | Dentona, Germany |
|
Rapid Simplified | Vertex Dental, Netherlands |
|
Material | Manufacturer | Specification |
---|---|---|
Denture 3D+ | NextDent, Netherlands |
|
Denturetec | Saremco, Switzerland |
|
Optiprint Laviva | Dentona, Germany |
|
Rapid Simplified | Vertex Dental, Netherlands |
|
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.029 | 0.025 | 0.010 | 27.131 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.004 | 0.031 | 0.029 | 0.003 | 0.029 | 0.028 | 0.003 | 0.112 | 0.104 | 0.033 | 29.048 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 86.43 | 86.40 | 0.22 | 86.38 | 86.40 | 0.22 | 86.49 | 86.58 | 0.16 | 80.44 | 81.54 | 2.85 | 25.824 | <0.001 *** | 1, 2, 3 > 4 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.009 | 0.009 | 0.001 | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.033 | 0.026 | 0.016 | 35.636 | <0.001 *** | 4 > 2, 3, 1 > 3 |
impact strength (J/cm2) | 0.036 | 0.036 | 0.005 | 0.030 | 0.029 | 0.004 | 0.027 | 0.028 | 0.002 | 0.132 | 0.103 | 0.059 | 33.731 | <0.001 *** | 4 > 2, 3, 1 > 3 |
angle [°] | 85.95 | 86.04 | 0.33 | 86.42 | 86.40 | 0.24 | 84.97 | 86.58 | 5.41 | 79.04 | 81.00 | 4.43 | 29.692 | <0.001 *** | 1, 2 > 4, 1 > 3 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.009 | 0.009 | 0.002 | 0.009 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 0.036 | 0.030 | 0.013 | 29.973 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.038 | 0.036 | 0.006 | 0.035 | 0.034 | 0.003 | 0.032 | 0.033 | 0.004 | 0.141 | 0.126 | 0.044 | 28.283 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 85.87 | 85.95 | 0.41 | 86.07 | 86.13 | 0.19 | 86.27 | 86.31 | 0.21 | 78.23 | 80.10 | 3.65 | 29.223 | <0.001 *** | 1, 2, 3 > 4 |
Nextdent (1) | Saremco (2) | Dentona (3) | Vertex (4) | Kruskall–Wallis Test | R.I.S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.000 | 0.030 | 0.028 | 0.011 | 27.615 | <0.001 *** | 4 > 1, 2, 3 |
impact strength (J/cm2) | 0.031 | 0.032 | 0.002 | 0.032 | 0.033 | 0.004 | 0.033 | 0.032 | 0.002 | 0.120 | 0.112 | 0.043 | 28.680 | <0.001 *** | 4 > 1, 2, 3 |
angle [°] | 86.33 | 86.31 | 0.09 | 86.29 | 86.31 | 0.24 | 86.26 | 86.31 | 0.12 | 79.92 | 80.55 | 3.11 | 26.088 | <0.001 *** | 1, 2, 3 > 4 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.009 | 0.009 | 0.001 | 0.009 | 0.009 | 0.002 | 0.008 | 0.008 | 0.001 | 19.298 | <0.001 *** | 3 > 1, 4, 2 > 1 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.004 | 0.036 | 0.036 | 0.005 | 0.038 | 0.036 | 0.006 | 0.031 | 0.032 | 0.002 | 17.745 | <0.001 *** | 2, 3 > 4 |
angle [°] | 86.43 | 86.40 | 0.22 | 85.95 | 86.04 | 0.33 | 85.87 | 85.95 | 0.41 | 86.33 | 86.31 | 0.09 | 21.257 | <0.001 *** | 1, 4 > 2, 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.009 | 0.008 | 0.001 | 0.008 | 0.008 | 0.001 | 12.916 | 0.005 ** | 3 > 1, 2 |
impact strength (J/cm2) | 0.031 | 0.029 | 0.003 | 0.030 | 0.029 | 0.004 | 0.035 | 0.034 | 0.003 | 0.032 | 0.033 | 0.004 | 14.018 | 0.003 ** | 3 > 1, 2 |
angle [°] | 86.38 | 86.40 | 0.22 | 86.42 | 86.40 | 0.24 | 86.07 | 86.13 | 0.19 | 86.29 | 86.31 | 0.24 | 12.548 | 0.006 ** | 1, 2 > 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene Oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.007 | 0.007 | 0.001 | 0.007 | 0.007 | 0.001 | 0.008 | 0.008 | 0.001 | 0.008 | 0.008 | 0.000 | 21.778 | <0.001 *** | 3, 4 > 2, 4 > 1 |
impact strength (J/cm2) | 0.029 | 0.028 | 0.003 | 0.027 | 0.028 | 0.002 | 0.032 | 0.033 | 0.004 | 0.033 | 0.032 | 0.002 | 23.750 | <0.001 *** | 3, 4 > 2, 4 > 1 |
angle [°] | 86.49 | 86.58 | 0.16 | 84.97 | 86.58 | 5.41 | 86.27 | 86.31 | 0.21 | 86.26 | 86.31 | 0.12 | 17.804 | <0.001 *** | 1, 2 > 4, 2 > 3 |
Sterilization Method | Kruskall–Wallis Test | R.I.S | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without (1) | Autoclave (2) | Ethylene oxide(3) | Radiation (4) | ||||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | M | Me | SD | H | p | ||
energy (J) | 0.029 | 0.025 | 0.010 | 0.033 | 0.026 | 0.016 | 0.036 | 0.030 | 0.013 | 0.030 | 0.028 | 0.011 | 2.802 | 0.423 | |
impact strength (J/cm2) | 0.112 | 0.104 | 0.033 | 0.132 | 0.103 | 0.059 | 0.141 | 0.126 | 0.044 | 0.120 | 0.112 | 0.043 | 2.819 | 0.420 | |
angle [°] | 80.44 | 81.54 | 2.85 | 79.04 | 81.00 | 4.43 | 78.23 | 80.10 | 3.65 | 79.92 | 80.55 | 3.11 | 2.973 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulska, A.; Mańka-Malara, K.; Krasowski, M.; Sokołowski, J.; Zwoliński, J.; Rafalski, A.; Kostrzewa-Janicka, J. The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers 2025, 17, 1279. https://doi.org/10.3390/polym17091279
Cybulska A, Mańka-Malara K, Krasowski M, Sokołowski J, Zwoliński J, Rafalski A, Kostrzewa-Janicka J. The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers. 2025; 17(9):1279. https://doi.org/10.3390/polym17091279
Chicago/Turabian StyleCybulska, Anna, Katarzyna Mańka-Malara, Michał Krasowski, Jerzy Sokołowski, Jakub Zwoliński, Andrzej Rafalski, and Jolanta Kostrzewa-Janicka. 2025. "The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators" Polymers 17, no. 9: 1279. https://doi.org/10.3390/polym17091279
APA StyleCybulska, A., Mańka-Malara, K., Krasowski, M., Sokołowski, J., Zwoliński, J., Rafalski, A., & Kostrzewa-Janicka, J. (2025). The Effect of Sterilization Methods on the Mechanical Properties of 3D-Printed and Conventional PMMA Materials for Denture Bases of Immediate Obturators. Polymers, 17(9), 1279. https://doi.org/10.3390/polym17091279