Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. PHB Production Procedure
2.3. Morphological Analysis of PHB
2.4. Biological Analysis (Cell Viability and Cytotoxicity)
2.5. Statistical Analysis
3. Results
3.1. Morphological Analysis
3.2. Biological Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ertan, B.; Atalayin Ozkaya, C.; Kaftan, G.; Birim, D.; Armagan, G.; Gungor, G.; Tezel, H. Polyhydroxybutyrate as a Potential Biopolymer Alternative to Dental Resin Materials: A Preliminary Study. Abstracts of the 11th ConsEuro Congress. 11th ConsEuro Congress, Antalya, Turkey, 21–23 April 2022. Clin. Oral Investig. 2022, 26, 7299–7348. [Google Scholar] [CrossRef]
- Mulla, S.A.; Kondkari, S.A.; Patil, A.; Jain, A.; Mali, S.; Jaiswal, H.C.; Jakhar, A.; Ansari, Z.M.; Agarwal, S.; Yadav, P.; et al. A Look into the Cytotoxicity of Composite Fillings: Friend or Foe. Cureus 2023, 15, e46327. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Zhuikova, Y.; Zhuikov, V.; Varlamov, V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers 2022, 14, 5549. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean。 Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and antimicrobial applications of biopolymers: A review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef]
- Pradhan, B.; Bharti, D.; Chakravarty, S.; Ray, S.S.; Voinova, V.V.; Bonartsev, A.P.; Pal, K. Internet of Things and Robotics in Transforming Current-Day Healthcare Services. J. Healthc. Eng. 2021, 2021, 9999504. [Google Scholar] [CrossRef]
- Shrivastava, A.; Dondapati, S. Biodegradable composites based on biopolymers and natural bast fibres: A review. Mater. Today 2021, 46, 1420–1428. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef]
- Chen, G.Q.; Patel, M.K. Plastics derived from biological sources: Present and future: A technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Zhang, J.; Shishatskaya, E.I.; Volova, T.G.; da Silva, L.F.; Chen, G.Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86, 144–150. [Google Scholar] [CrossRef]
- Ben Abdeladhim, R.; Reis, J.A.; Vieira, A.M.; de Almeida, C.D. Polyhydroxyalkanoates: Medical Applications and Potential for Use in Dentistry. Materials 2024, 17, 5415. [Google Scholar] [CrossRef]
- Gielisch, M.; Heimes, D.; Thiem, D.G.E.; Boesing, C.; Krumpholtz, M.; Al-Nawas, B.; Kämmerer, P.V. Steam-sterilized and degradable fused filament fabrica-tion-printed polylactide/ polyhydroxyalkanoate surgical guides for dental implants: Are they accurate enough for static navigation? Int. J. Bioprint. 2023, 9, 655. [Google Scholar] [CrossRef]
- Jiang, G.; Hill, D.J.; Kowalczuk, M.; Johnston, B.; Adamus, G.; Irorere, V.; Radecka, I. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int. J. Mol. Sci. 2016, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
- Freier, T.; Kunze, C.; Nischan, C.; Kramer, S.; Sternberg, K.; Sass, M.; Hopt, U.T.; Schmitz, K.-P. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 2002, 23, 2649–2657. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.A.; Hazeena, S.H.; Lakshmi, N.M.; Madhavan, A.; Sirohi, R.; Tarafdar, A.; Sindhu, R.; Awasthi, M.K.; Pandey, A.; Binod, P.; et al. Bacterial biopolymers: From production to applications in biomedicine. Sustain. Chem. Pharm. 2022, 25, 100582. [Google Scholar] [CrossRef]
- Demirbilek, M.; Sakar, M.; Karahaliloğlu, Z.; Erdal, E.; Yalçın, E.; Bozkurt, G.; Korkusuz, P.; Bilgiç, E.; Temuçin, M.; Denkbaş, E.B. Aligned bacterial PHBV nanofibrous conduit for peripheral nerve regeneration. Artif. Cells Nanomed. Biotechnol. 2015, 43, 243–251. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices-Part 5. Tests for Cytotoxicity: In Vitro Methods. International Organization for Standardization: Geneve, Switzerland, 1992.
- Kirkpatrick, C.J.; Bittinger, F.; Wagner, M.; Köhler, H.; van Kooten, T.G.; Klein, C.L.; Otto, M. Current trends in biocompatibility testing. Proc. Inst. Mech. Eng. H 1998, 212, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Polyzois, G.L.; Hensten-Pettersen, A.; Kullmann, A. An assessment of the physical properties and biocompatibility of three silicone elastomers. J. Prosthet. Dent. 1994, 71, 500–504. [Google Scholar] [CrossRef]
- ISO 7405; Dentistry-Preclinical Evaluation of Biocompatibility of Medicaldevices Used in Dentistry-Test Methods for Dental Materials. International Organization for Standardization: Geneve, Switzerland, 1997.
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lenie, S.; Cortvrindt, R.; Eichenlaub-Ritter, U.; Smitz, J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res. 2008, 651, 71–81. [Google Scholar] [CrossRef]
- Atalayin Ozkaya, C.; Tezel, H.; Armagan, G.; Tuzcu, F.; Sahbaz, U.; Dagci, T. The effects of extended polymerization time for different resin composites on reactive oxygen species production and cell viability. J. Oral Sci. 2020, 63, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Sanhueza, C.; Acevedo, F.; Rocha, S.; Villegas, P.; Seeger, M.; Navia, R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int. J. Biol. Macromol. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Hanks, C.T.; Strawn, S.E.; Wataha, J.C.; Craig, R.G. Cytotoxic effects of resin components on cultured mammalian fibroblasts. J. Dent. Res. 1991, 70, 1450–1455. [Google Scholar] [CrossRef]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, E. Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity. J. Biomed. Mater. Res. 1997, 37, 517–524. [Google Scholar] [CrossRef]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
Material | Composition | Manufacturer | Lot Number |
---|---|---|---|
Point 4 | BisGMA, TEGDMA, BisEMA, Barium aluminum boro silicate, filler 77% by weight | Kerr, Santa Barbara, CA, USA | 7500391 |
G-aenial Anterior | UDMA, dimethacrylate co-monomers, prepolymerized silica, strontium fluoride | GC, Tokyo, Japan | 2007021 |
Filtek Ultimate Flowable | The Resin Matrix: BIS-GMA, TEGDMA, EDMA, benzotriazole, diphenyl iodonium hexafluorophosphate, dimethacrylate, ytterbium flüoride. The Filler: 65 wt %, 46 vol % Silica (75 nm), zirconium (5–10 nm), silane treated ceramic, silica. | 3M ESPE, St. Paul, MN, USA | NA83839 |
Nova Compo HF | Organic Matrix Content: Hydrophobic aromatic dimethacrylates, Bis-GMA, Bis-MEP, TEGDMA, UDMA. Inorganic Filler Particles: Silanized barium glass, nano ytterbium, silanized highly dispersed nano silicon dioxide, silica-zirconia, prepolymer fillers 65–70% by weight, 53–55% by volume | Imicryl, Konya, Turkey | 1783 |
Nova Compomer | Organic Matrix Content: BIS-GMA, Dimethacrylate ULS. Inorganic Matrix Content: Barium Glasses, Ytterbium trifluoride, Prepolymer filler by Weight: 78%, by Volume: 59–60 | Imicryl, Konya, Turkey | 21D738 |
Fissured Nova Plus | Hydrophilic Dimethacrylates, hydrophobic dimethacrylates, highly dispersed silica, sodium fluoride, fluorosilicate glass, stabilizers, catalysts. Filler ratio: 55%. | Imicryl, Konya, Turkey | 21C574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atalayin Ozkaya, C.; Ertan, B.; Kaftan Ocal, G.; Armagan, G.; Gungor, G.; Demirbilek, M.; Tezel, H.; Notaro, V.; Scotti, N.; Baldi, A. Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis. Polymers 2025, 17, 313. https://doi.org/10.3390/polym17030313
Atalayin Ozkaya C, Ertan B, Kaftan Ocal G, Armagan G, Gungor G, Demirbilek M, Tezel H, Notaro V, Scotti N, Baldi A. Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis. Polymers. 2025; 17(3):313. https://doi.org/10.3390/polym17030313
Chicago/Turabian StyleAtalayin Ozkaya, Cigdem, Beliz Ertan, Gizem Kaftan Ocal, Guliz Armagan, Gokhan Gungor, Murat Demirbilek, Huseyin Tezel, Vincenzo Notaro, Nicola Scotti, and Andrea Baldi. 2025. "Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis" Polymers 17, no. 3: 313. https://doi.org/10.3390/polym17030313
APA StyleAtalayin Ozkaya, C., Ertan, B., Kaftan Ocal, G., Armagan, G., Gungor, G., Demirbilek, M., Tezel, H., Notaro, V., Scotti, N., & Baldi, A. (2025). Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis. Polymers, 17(3), 313. https://doi.org/10.3390/polym17030313