Polysaccharide-Based Materials: Developments and Properties
Funding
Conflicts of Interest
References
- Berradi, A.; Aziz, F.; El Achaby, M.; Ouazzani, N.; Mandi, L.A. Comprehensive review of polysaccharide-based hydrogels as promising biomaterials. Polymers 2023, 15, 2908. [Google Scholar] [CrossRef]
- Goyal, R.; Verma, S.; Vaish, M.; Shekhar, A. Polysaccharide: A biodegradable biopolymer for edible films and coating. J. Current Res. Food Sci. 2025, 6, 170–176. [Google Scholar] [CrossRef]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A review of natural polysaccharides: Sources, characteristics, properties, food, and pharmaceutical applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef]
- Xu, B.-W.; Li, S.-S.; Ding, W.-L.; Zhang, C.; Rehman, M.U.; Tareen, M.F.; Wang, L.; Huang, S.-C. From structure to function: A comprehensive overview of polysaccharide roles and applications. Food Front. 2025, 6, 15–19. [Google Scholar] [CrossRef]
- Muhammad, A.; Lee, D.; Shin, Y.; Park, J. Recent progress in polysaccharide aerogels: Their synthesis, application, and future outlook. Polymers 2021, 13, 1347. [Google Scholar] [CrossRef]
- Lago, A.; Delgado, J.F.; Rezzani, G.D.; Cottet, C.; Ramírez Tapias, Y.A.; Peltzer, M.A.; Salvay, A.G. Multi-component biodegradable materials based on water kefir grains and yeast biomasses: Effect of the mixing ratio on the properties of the films. Polymers 2023, 15, 2594. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ren, Y.; Hou, Y.; Zhan, Q.; Jin, P.; Zheng, Y.; Wu, Z. Polysaccharide-based composite films: Promising biodegradable food packaging materials. Foods 2024, 13, 3674. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Khalid, W.; Kumar, P.; Benmebarek, I.E.; Rasool, I.F.U.; Trif, M.; Moreno, M.; Esatbeyoglu, T. Valorization of plant-based agro-industrial waste and by-products for the production of polysaccharides: Towards a more circular economy. Appl. Food Res. 2025, 5, 100954. [Google Scholar] [CrossRef]
- Mouro, C.; Gomes, A.P.; Gouveia, I.C. Microbial exopolysaccharides: Structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides 2024, 5, 241–287. [Google Scholar] [CrossRef]
- Coma, M.E.; Peltzer, M.A.; Delgado, J.F.; Salvay, A.G. Water kefir grains as an innovative source of materials: Study of plasticiser content on film properties. Eur. Polym. J. 2019, 120, 109234. [Google Scholar] [CrossRef]
- Liu, T.; Ren, Q.; Wang, S.; Gao, J.; Shen, C.; Zhang, S.; Wang, Y.; Guan, F. Chemical modification of polysaccharides: A review of synthetic approaches, biological activity and the structure–activity relationship. Molecules 2023, 28, 6073. [Google Scholar] [CrossRef]
- Janik, W.; Jakubski, L.; Kudła, S.; Dudek, G. Modified polysaccharides for food packaging applications: A review. Int. J. Biol. Macromol. 2024, 258, 128916. [Google Scholar] [CrossRef]
- Trache, D.; Thakur, V.K.; Boukherroub, R. Cellulose nanocrystals/graphene hybrids—A promising new class of materials for advanced applications. Nanomaterials 2020, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, X.; Zhang, W.; Cui, B.; Du, Y.; Huang, Y.; Li, W.; Liu, Q.; Ren, C.; Tang, Z. A review of polysaccharide-based hydrogels: From structural modification to biomedical applications. Int. J. Biol. Macromol. 2025, 310, 143519. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.; Sieber, V. Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. ChemBioChem 2015, 16, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Du, L.; Guo, Y.; Yang, X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int. J. Biol. Macromol. 2024, 280, 135838. [Google Scholar] [CrossRef]
- Díaz Bukvic, G.; Rossi, E.; Errea, M.I. Polysaccharides as economic and sustainable raw materials for the preparation of adsorbents for water treatment. Polysaccharides 2023, 4, 219–255. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Zhang, D.; Li, M.; Wen, X.; Lei, X.; Ye, Z.; Pang, J. High performance multifunctional bio-gel sensor prepared with konjac glucomannan and κ-carrageenan. Carbohydr. Polym. 2025, 368, 124215. [Google Scholar] [CrossRef]
- Kadsanit, K.; Sriariyanun, M.; Phisalaphong, M.; Kirdponpattara, S. Tailoring dialdehyde bacterial cellulose synthesis for versatile applications. Polymers 2025, 17, 1836. [Google Scholar] [CrossRef]
- Li, J.; Peng, W.; Lei, Z.; Jian, J.; Cong, J.; Zhao, C.; Wu, Y.; Su, J.; Han, S. Fabrication of zwitterionized nanocellulose/polyvinyl alcohol composite hydrogels derived from camellia oleifera shells for high-performance flexible sensing. Polymers 2025, 17, 1901. [Google Scholar] [CrossRef]
- Legerstee, W.J.; Kiriinya, L.; Kwakernaak, M.; Kelder, E.M. Magnesium transfer between atomic force microscopy probes and metal electrodes in aqueous alginate electrolytes. Polymers 2024, 16, 1615. [Google Scholar] [CrossRef]
- Lamoudan, H.; Abenghal, L.; Belosinschi, D.; Brouillette, F.; Dolez, P.; Panneton, R.; Fonrouge, C. Sustainable transformation of cellulose-containing textile waste into multifunctional panels with tailored fr-lignocellulosic fibres. Polymers 2024, 16, 3242. [Google Scholar] [CrossRef]
- Trivunac, K.; Mihajlović, S.; Vukčević, M.; Maletić, M.; Pejić, B.; Kalijadis, A.; Perić Grujić, A. Modified cellulose-based waste for enhanced adsorption of selected heavy metals from wastewater. Polymers 2024, 16, 2610. [Google Scholar] [CrossRef]
- Wang, R.; Ong, D.E.L.; Sadighi, H.; Goli, M.; Xia, P.; Fatehi, H.; Yao, T. Optimizing soil stabilization with chitosan: Investigating acid concentration, temperature, and long-term strength. Polymers 2025, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Gorroñogoitia, I.; Olza, S.; Alonso-Varona, A.; Zaldua, A.M. The effect of alginate/hyaluronic acid proportion on semi-interpenetrating hydrogel properties for articular cartilage tissue engineering. Polymers 2025, 17, 528. [Google Scholar] [CrossRef] [PubMed]
- Nitikornwarakul, C.; Wangpradid, R.; Rakkapao, N. Impact of molar composition on the functional properties of glutinous rice starch–chitosan blend: Natural-based active coating for extending mango shelf life. Polymers 2024, 16, 1375. [Google Scholar] [CrossRef] [PubMed]
- Shlosman, K.; Rein, D.M.; Shemesh, R.; Cohen, Y. Lyophilized emulsions of thymol and eugenol essential oils encapsulated in cellulose. Polymers 2024, 16, 1422. [Google Scholar] [CrossRef]
- Ramírez Tapias, Y.A.; Rezzani, G.D.; Delgado, J.F.; Peltzer, M.A.; Salvay, A.G. New Materials from the Integral Milk kefir grain biomass and the purified kefiran: The role of glycerol content on the film’s properties. Polymers 2024, 16, 3106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvay, A.G. Polysaccharide-Based Materials: Developments and Properties. Polymers 2025, 17, 3028. https://doi.org/10.3390/polym17223028
Salvay AG. Polysaccharide-Based Materials: Developments and Properties. Polymers. 2025; 17(22):3028. https://doi.org/10.3390/polym17223028
Chicago/Turabian StyleSalvay, Andrés Gerardo. 2025. "Polysaccharide-Based Materials: Developments and Properties" Polymers 17, no. 22: 3028. https://doi.org/10.3390/polym17223028
APA StyleSalvay, A. G. (2025). Polysaccharide-Based Materials: Developments and Properties. Polymers, 17(22), 3028. https://doi.org/10.3390/polym17223028
