Dependence of Thermal Comfort of Diving Suit on Neoprene Properties and Diving Depth
Abstract
1. Introduction
- A comprehensive analysis across multiple commercial neoprene types with varying densities, thicknesses, and lining configurations.
- Practical quantification of thermal performance at standardized recreational diving depths (up to 20 m) across diverse commercial products.
- Empirical, property-based models that can bridge the divide between theoretical physics and practical engineering design in the diving industry.
- Quantitatively measure the reduction in thermal resistance (Rct) under a compressive load of 50, 100, 150, and 200 kPa, simulating a diving depth of up to 20 m.
- Establish precise correlation coefficients between thermal resistance, thickness, and mass per unit area.
- Develop and validate multiple regression models that can reliably predict the in situ thermal resistance of neoprene after depth-induced compression, using only its initial thickness and mass.
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The thermal resistance of neoprene at the surface is highly variable (0.036–0.206 m2 KW−1) and is predominantly determined by its thickness and mass per unit area.
- Under a pressure of 200 kPa (simulating 20 m depth), neoprene exhibits substantial compressibility, with an average thickness reduction of 64.3%. This compression is directly correlated with the original thickness of the material.
- The consequent average loss in thermal resistance is 40.9%, a critical figure for diver safety and comfort planning. The developed multiple regression models enable reliable prediction of this loss based on simple initial material measurements.
- Neoprene’s thermal resistance decreases rapidly within the first 5–10 m of immersion due to intensive compressive displacement, after which the rate of degradation slows significantly. High-end neoprene materials exhibit improved structural stability and retain up to 10% more thermal insulation compared to standard neoprene, highlighting their advantage for wetsuits intended for prolonged or deeper recreational dives.
- Multiple regression models successfully predicted thermal resistance from thickness and mass per unit area, with high statistical significance (R2 = 0.853 for standard neoprene, R2 = 0.967 for high-performance variants, p < 0.001). These models enable reliable estimation of depth-dependent thermal performance from surface measurements, supporting evidence-based material selection.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Crotti, G.; Cantù, R.; Malavasi, S.; Gatti, G.; Laurano, C.; Svelto, C. Wetsuit thermal resistivity measurements. Sensors 2024, 24, 4561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, H.; Yang, C.; Li, Y. Dynamic fit optimization and effect evaluation of a female wetsuit on virtual technology. Sustainability 2023, 15, 2197. [Google Scholar] [CrossRef]
- DiverTown. What is Neoprene? DiverTown, 3 September 2024. Available online: https://www.divertown.com/en/neoprene/ (accessed on 15 September 2025).
- Admin. What is Neoprene. All4 Synthetic Fabrics Manufacturer, 18 April 2025. Available online: https://all4neoprene.com/what-is-neoprene-fabric/ (accessed on 15 September 2025).
- Chater, R. The real wetsuit guide. IKSURFMAG. December 2017/January 2018. Volume 66, pp. 69–96. Available online: https://www.iksurfmag.com/issue66/?Cover (accessed on 15 September 2025).
- Bardy, E.; Mollendorf, J.; Pendergast, D. Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure. J. Phys. D Appl. Phys. 2005, 38, 3832. [Google Scholar] [CrossRef]
- Mak, L.; Farnworth, B.; Ducharme, M.B.; Kuczora, A.; Sweeney, D.; Uglene, W.; Hackett, P.; Potter, P. Thermal Protection Measurement of Immersion Suit: Comparison of Two Manikins with Humans—Pilot Study Report; National Research Council Canada: Ottawa, ON, Canada, 2010. [CrossRef]
- Hall, J.; Lomax, M.; Massey, H.C.; Tipton, M.J. Thermal response of triathletes to 14 °C swim with and without wetsuits. Extrem. Physiol. Med. 2015, 4, 10. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E. A study of the improvement of foam material sealing technology for thermal protection in wetsuits. Fash. Text. 2019, 6, 25. [Google Scholar] [CrossRef]
- Arieli, R.; Kerem, D.; Gonen, A.; Goldenberg, I.; Shoshani, O.; Daskalovic, Y.I.; Shupak, A. Thermal status of wet-suited divers using closed circuit O2 apparatus in sea water of 17–18.5 °C. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, C.; Yang, X.; Cao, X.; Feng, T.; Zhou, F.; Wang, X.J.; Zhao, P.; Li, T.Y. Test for the Deep: Magnetic Loading Characterization of Elastomers under Extreme Hydrostatic Pressures. Int. J. Extrem. Manuf. 2024, 6, 055602. [Google Scholar] [CrossRef]
- Lafère, P.; Guerrero, F.; Germonpré, P.; Balestra, C. Comparison of insulation provided by dry or wetsuits among recreational divers during cold water immersion (<5 °C). Int. Marit. Health 2021, 72, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Navodya, U.; Keenawinna, G.; Gunasekera, U. The development of sustainable alternative to Neoprene Wetsuit Fabric. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; University of Moratuwa: Moratuwa, Sri Lanka, 2020. Available online: https://www.researchgate.net/publication/344191911_The_Development_of_Sustainable_Alternative_to_Neoprene_Wetsuit_Fabric (accessed on 15 September 2025).
- Crotti, G.; Cantù, R.; Gatti, G.; Shabanalinezhad, H.; Hoang, M.L.; Chiorboli, G.; Laurano, C.; Casella, F.; Svelto, C. Measurement System for Wetsuits Thermal Characterization. In Proceedings of the 2025 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Chemnitz, Germany, 19–22 May 2025; pp. 1–4. [Google Scholar] [CrossRef]
- Bardy, E.; Mollendorf, J.; Pendergast, D. Predicting the thermal conductivity of foam neoprene at elevated ambient pressure. J. Thermal Sci. Eng. Appl. 2010, 2, 014501. [Google Scholar] [CrossRef]
- Brown, J.; Oldenkamp, J.; Gamache, R.; Grbovic, D.; Kartalov, E. Hollow-microsphere composite offers depth-independent superior thermal insulation for diver suits. Mater. Res. Express 2019, 6, 055314. [Google Scholar] [CrossRef]
- Demers, A.; Martin, S.; Kartalov, E.P. Proof-of-concept for a segmented composite diving suit offering depth-independent thermal protection. Diving Hyperb. Med. 2021, 51, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.R.; Arrington, L.J.; Bernards, J.R.; Jensen, A.E. Prolonged Extreme Cold Water Diving and the Acute Stress Response During Military Dive Training. Front. Physiol. 2022, 13, 842612. [Google Scholar] [CrossRef] [PubMed]
- Potočić Matković, V.M.; Salopek Čubrić, I. Comparison of actual diver thermal comfort with measured properties of neoprene. In Proceedings of the 22nd Congress of the International Ergonomics Association, SSDI, Jeju Island, Republic of Korea, 25–29 August 2025; Volume 3, Volume 41, pp. 214–220. [Google Scholar] [CrossRef]
- Potočić Matković, V.M.; Salopek Čubrić, I. Performance of neoprene wetsuits in different underwater thermal environments. In Book of Proceedings of the 7th International Ergonomics Conference, Zadar, Croatia, 13–16 June 2018; Hrvatsko Ergonomijsko Društvo: Zagreb, Croatia, 2018; pp. 301–308. [Google Scholar]
- Crotti, G.; Cantù, R.; Malavasi, S.; Gatti, G.; Svelto, C. Prototype of an Industrial Measurement System for Thermal Conductivity of Scuba Diving Wetsuits. In Proceedings of the 2023 IEEE International Workshop Metrology for the Sea, Valletta, Malta, 4–6 October 2023; p. 10405795. [Google Scholar] [CrossRef]
- Kwong-Wright, A. Microsphere-Based Composite Wetsuit for Incompressible Passive Thermal Insulation. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2021. Available online: https://calhoun.nps.edu/entities/publication/71826b67-c95b-4538-8d5a-b359c4389489 (accessed on 15 September 2025).
- Enhanced Thermal Insulation in Water Through the Use of Glass and Ceramic Microspheres. DTIC Technical Report AD1225512 2020. Available online: https://apps.dtic.mil/sti/trecms/pdf/AD1225512.pdf (accessed on 15 September 2025).
- ISO 5084:1996; Textiles—Determination of Thickness of Textiles and Textile Products. International Organization for Standardization (ISO): Geneva, Switzerland, 1996.
- ISO 139:2005; Textiles—Standard Atmospheres for Conditioning and Testing. International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- ISO 3801:1977; Textiles—Woven Fabrics—Determination of Mass per Unit Length and Mass per Unit Area. International Organization for Standardization (ISO): Geneva, Switzerland, 1977.
- ISO 11092:2014; Textiles—Physiological Effects—Measurement of Thermal and Water-Vapour Resistance Under Steady-State Conditions (Sweating Guarded-Hotplate Test). International Organization for Standardization (ISO): Geneva, Switzerland, 2014.




| Sample | Thickness at 1 kPa, mm | Mass Per Unit Area, gm−2 | Thermal Resistance, Rct |
|---|---|---|---|
| M1OSa3 | 3.5900 | 826.61 | 0.0575 |
| M1OSa5 | 5.7567 | 1380.69 | 0.0955 |
| M1OSa7 | 7.6233 | 1668.22 | 0.1365 |
| M1OSb3 | 3.7400 | 945.70 | 0.0665 |
| M1OSb5 | 5.5033 | 1277.17 | 0.1005 |
| M1OSb7 | 7.3967 | 1835.69 | 0.1315 |
| M1NO3 | 3.7667 | 1104.54 | 0.0765 |
| M1NO5 | 5.1467 | 1283.13 | 0.0915 |
| M1NO7 | 6.9400 | 1755.99 | 0.1205 |
| M2BS3 | 3.8067 | 968.12 | 0.0635 |
| M2BS5 | 6.9833 | 1277.00 | 0.1175 |
| M2BS7 | 8.0000 | 1966.54 | 0.1545 |
| M2NO3 | 3.7633 | 1148.23 | 0.0715 |
| M2NO5 | 5.1000 | 1458.62 | 0.1035 |
| M2NO7 | 7.2167 | 1808.25 | 0.1265 |
| M2OS3 | 3.6733 | 895.70 | 0.0695 |
| M2OS5 | 5.2367 | 1277.00 | 0.0825 |
| M2OS7 | 8.2833 | 1978.56 | 0.0985 |
| M3NOa3 | 3.2933 | 874.61 | 0.0535 |
| M3NOa5 | 4.6567 | 1382.11 | 0.0815 |
| M3NOa7 | 6.7433 | 1820.76 | 0.1195 |
| M3NOb3 | 3.4500 | 988.29 | 0.1340 |
| M3NOb5 | 5.5167 | 1288.65 | 0.1720 |
| M3NOb7 | 7.0667 | 1659.18 | 0.2010 |
| M3NOc3 | 3.1267 | 858.12 | 0.0355 |
| M3NOc5 | 5.2467 | 1323.01 | 0.0985 |
| M3NOc7 | 7.6267 | 1933.70 | 0.1395 |
| M4BS3 | 3.6967 | 759.59 | 0.1305 |
| M4BS5 | 5.7167 | 1202.27 | 0.1590 |
| M4BS7 | 7.7367 | 1538.36 | 0.2055 |
| M4OS3 | 3.3167 | 687.29 | 0.1240 |
| M4OS5 | 5.5733 | 1093.46 | 0.1770 |
| M4OS7 | 7.1967 | 1404.61 | 0.1980 |
| Sample | Compressive Displacement at 50 kPa, mm | Compressive Displacement at 100 kPa, mm | Compressive Displacement at 150 kPa, mm | Compressive Displacement at 200 kPa, mm |
|---|---|---|---|---|
| M1OSa3 | 0.9480 | 1.4424 | 1.7454 | 2.2409 |
| M1OSa5 | 1.8563 | 2.6931 | 3.1880 | 3.5361 |
| M1OSa7 | 2.6134 | 3.8141 | 4.5001 | 4.8921 |
| M1OSb3 | 1.2812 | 1.8560 | 2.1887 | 2.5285 |
| M1OSb5 | 1.8770 | 2.7348 | 3.2186 | 3.5175 |
| M1OSb7 | 2.5327 | 3.7126 | 4.3689 | 4.7489 |
| M1NO3 | 1.0289 | 1.5539 | 1.8567 | 1.9871 |
| M1NO5 | 1.3917 | 2.1887 | 2.6430 | 2.8679 |
| M1NO7 | 1.8575 | 2.9068 | 3.5125 | 4.0899 |
| M2BS3 | 1.3424 | 1.8770 | 2.1803 | 2.3915 |
| M2BS5 | 2.2996 | 3.2784 | 3.8224 | 4.0158 |
| M2BS7 | 1.8867 | 3.0666 | 3.7524 | 4.5651 |
| M2NO3 | 1.4429 | 2.0482 | 2.3912 | 2.6147 |
| M2NO5 | 1.9373 | 2.7539 | 3.2173 | 3.4899 |
| M2NO7 | 2.2498 | 3.4194 | 4.0652 | 4.3669 |
| M2OS3 | 1.1504 | 1.7260 | 2.0488 | 2.4266 |
| M2OS5 | 1.8154 | 2.6728 | 3.1571 | 3.3950 |
| M2OS7 | 2.3291 | 3.6905 | 4.4471 | 5.0344 |
| M3NOa3 | 1.3931 | 1.9274 | 2.2296 | 2.4007 |
| M3NOa5 | 1.7240 | 2.4711 | 2.8945 | 3.0578 |
| M3NOa7 | 2.3106 | 3.4406 | 4.0765 | 4.4477 |
| M3NOb3 | 0.9581 | 1.4729 | 1.7758 | 2.1753 |
| M3NOb5 | 2.1198 | 3.0483 | 3.5628 | 3.7701 |
| M3NOb7 | 2.5008 | 3.6812 | 4.3166 | 4.6160 |
| M3NOc3 | 1.2918 | 1.7765 | 2.0594 | 2.2801 |
| M3NOc5 | 1.9673 | 2.8044 | 3.2690 | 3.6280 |
| M3NOc7 | 2.5720 | 3.8026 | 4.4792 | 4.9447 |
| M4BS3 | 1.4129 | 1.9376 | 2.2498 | 2.3798 |
| M4BS5 | 1.9768 | 2.8548 | 3.3490 | 3.6564 |
| M4BS7 | 2.9671 | 4.2378 | 4.9239 | 5.2902 |
| M4OS3 | 1.2209 | 1.7256 | 2.0181 | 2.2109 |
| M4OS5 | 1.8857 | 2.7433 | 3.2482 | 3.6741 |
| M4OS7 | 2.7534 | 3.9029 | 4.5375 | 4.7555 |
| Compressive Displacement at Maximum Force, mm | Thickness at 1 kPa, mm | Thickness at 200 kPa, mm | Mass Per Unit Area, gm−2 | |
|---|---|---|---|---|
| Compressive displacement at maximum force, mm | 1 | |||
| Thickness at 1 kPa, mm | 0.97550 | 1 | ||
| Thickness at 200 kPa, mm | 0.85406 | 0.94757 | 1 | |
| Mass per unit area, gm−2 | 0.88211 | 0.91189 | 0.87490 | 1 |
| Thickness at 1 kPa, mm | Mass Per Unit Area, gm−2 | Thermal Resistance, m2 KW−1 | |
|---|---|---|---|
| Thickness at 1 kPa, mm | 1.00000 | ||
| Mass per unit area, gm−2 | 0.93988 | 1.00000 | |
| Thermal resistance, m2 KW−1 | 0.91980 | 0.89388 | 1 |
| Thickness at 1 kPa, mm | Mass Per Unit Area, gm−2 | Thermal Resistance, m2 KW−1 | |
|---|---|---|---|
| Thickness at 1 kPa, mm | 1.00000 | ||
| mass per unit area, gm−2 | 0.93047 | 1.00000 | |
| Thermal resistance, m2 KW−1 | 0.98027 | 0.94059 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potočić Matković, V.M.; Salopek Čubrić, I.; Pavko Čuden, A. Dependence of Thermal Comfort of Diving Suit on Neoprene Properties and Diving Depth. Polymers 2025, 17, 2820. https://doi.org/10.3390/polym17212820
Potočić Matković VM, Salopek Čubrić I, Pavko Čuden A. Dependence of Thermal Comfort of Diving Suit on Neoprene Properties and Diving Depth. Polymers. 2025; 17(21):2820. https://doi.org/10.3390/polym17212820
Chicago/Turabian StylePotočić Matković, Vesna Marija, Ivana Salopek Čubrić, and Alenka Pavko Čuden. 2025. "Dependence of Thermal Comfort of Diving Suit on Neoprene Properties and Diving Depth" Polymers 17, no. 21: 2820. https://doi.org/10.3390/polym17212820
APA StylePotočić Matković, V. M., Salopek Čubrić, I., & Pavko Čuden, A. (2025). Dependence of Thermal Comfort of Diving Suit on Neoprene Properties and Diving Depth. Polymers, 17(21), 2820. https://doi.org/10.3390/polym17212820

