Advanced Post-Processing Techniques for Hydrophobic and Flame-Retardant Textiles
Abstract
1. Introduction
2. Research Methodology
3. Hydrophobisation of Textile Materials
3.1. Hydrophobisation of Textile Materials by Chemical Modification
3.2. Hydrophobisation of Textiles by Surface Morphology Modification
3.3. Hydrophobisation of Textiles with Natural Organic Agents
4. Non-Combustible (Flame-Retardant) Textiles
4.1. Methods for Controlling the Flammability of Textile Materials
4.2. Traditional Methods of Creating Fire-Resistant Textiles
4.3. Modern Methods of Creating Fire-Resistant Textiles
5. Prospects and Main Limitations
5.1. Multifunctionality
5.2. Improving the Environmental Friendliness of the Functionalization Process
5.3. Maintaining the Basic Properties of Fabric
5.4. Establishing the Effect of Functionalization on Colorimetric Characteristics
5.5. Study of Scaling Processes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Wu, J.; Wang, Y.; Zhang, L.; Ran, F. Perspective in Textile Energy Storage Integrated Textile Elements: Textile Materials, Structure, and Manufactured Methods. Adv. Energy Mater. 2024, 14, 2303587. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Paul, R. High Performance Technical Textiles, 1st ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-32501-7. [Google Scholar]
- Heo, J.S.; Eom, J.; Kim, Y.; Park, S.K. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Singh, P.; Mishra, P.K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environ. Qual. Manag. 2018, 27, 31–41. [Google Scholar] [CrossRef]
- Aliaga, C.; Castillo, C.; Gutierrez, D.; Otaduy, M.A.; Lopez-Moreno, J.; Jarabo, A. An Appearance Model for Textile Fibers. Comput. Graph. Forum 2017, 36, 35–45. [Google Scholar] [CrossRef]
- Sanchez, V.; Walsh, C.J.; Wood, R.J. Textile Technology for Soft Robotic and Autonomous Garments. Adv. Funct. Mater. 2021, 31, 2008278. [Google Scholar] [CrossRef]
- Van Der Velden, N.M.; Kuusk, K.; Köhler, A.R. Life cycle assessment and eco-design of smart textiles: The importance of material selection demonstrated through e-textile product redesign. Mater. Des. 2015, 84, 313–324. [Google Scholar] [CrossRef]
- Wang, L.; Fu, X.; He, J.; Shi, X.; Chen, T.; Chen, P.; Wang, B.; Peng, H. Application Challenges in Fiber and Textile Electronics. Adv. Mater. 2020, 32, 1901971. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Lombi, E.; Dasilva, Y.A.R.; Nowack, B. Unraveling the Complexity in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the Effects of Sunlight and Washing on Silver Nanoparticles. Environ. Sci. Technol. 2016, 50, 5790–5799. [Google Scholar] [CrossRef]
- Wang, S.; Salmon, S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022, 3, 376–403. [Google Scholar] [CrossRef]
- Fu, K.; Yang, Z.; Pei, Y.; Wang, Y.; Xu, B.; Wang, Y.; Yang, B.; Hu, L. Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and Cooling-Management. Adv. Fiber Mater. 2019, 1, 61–70. [Google Scholar] [CrossRef]
- Miao, D.; Wang, X.; Yu, J.; Ding, B. Nanoengineered Textiles for Outdoor Personal Cooling and Drying. Adv. Funct. Mater. 2022, 32, 2209029. [Google Scholar] [CrossRef]
- Simegnaw, A.A.; Malengier, B.; Rotich, G.; Tadesse, M.G.; Van Langenhove, L. Review on the Integration of Microelectronics for E-Textile. Materials 2021, 14, 5113. [Google Scholar] [CrossRef]
- Lai, Y.; Deng, J.; Zhang, S.L.; Niu, S.; Guo, H.; Wang, Z.L. Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing. Adv. Funct. Mater. 2017, 27, 1604462. [Google Scholar] [CrossRef]
- Venkataraman, M.; Mishra, R.; Kotresh, T.M.; Militky, J.; Jamshaid, H. Aerogels for thermal insulation in high-performance textiles. Text. Prog. 2016, 48, 55–118. [Google Scholar] [CrossRef]
- Mahltig, B.; Zhang, J.; Wu, L.; Darko, D.; Wendt, M.; Lempa, E.; Rabe, M.; Haase, H. Effect pigments for textile coating: A review of the broad range of advantageous functionalization. J. Coat. Technol. Res. 2017, 14, 35–55. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Chwastowski, J.; Kucharski, A.; Banach, M. Functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016, 385, 543–553. [Google Scholar] [CrossRef]
- Daget, T.M.; Kassie, B.B.; Tassew, D.F. A shift from synthetic to bio-based polymer for functionalization of textile materials: A review. Int. J. Biol. Macromol. 2025, 306, 141637. [Google Scholar] [CrossRef]
- Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.T.; Younus, A. Fabrication of Robust Multifaceted Textiles by Application of Functionalized TiO2 Nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2019, 581, 123799. [Google Scholar] [CrossRef]
- Mohamed, A.L.; El-Naggar, M.E.; Shaheen, T.I.; Hassabo, A.G. Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int. J. Biol. Macromol. 2017, 95, 429–437. [Google Scholar] [CrossRef]
- Pinho, E.; Soares, G. Functionalization of cotton cellulose for improved wound healing. J. Mater. Chem. B 2018, 6, 1887–1898. [Google Scholar] [CrossRef]
- Saini, S.; Gupta, A.; Singh, N.; Sheikh, J. Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract. J. Ind. Eng. Chem. 2020, 82, 138–143. [Google Scholar] [CrossRef]
- Shakoorjavan, S.; Eskafi, M.; Stawski, D.; Akbari, S. New effective ways of polypropylene and polylactide nonwovens functionalization. J. Text. Inst. 2025, 116, 1413–1425. [Google Scholar] [CrossRef]
- Emam, H.E. Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand In Vitro Drug Release. ACS Appl. Mater. Interfaces 2020, 12, 51225–51235. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Zheng, Z.; Liu, S.; Mao, S.; Li, X.; Chen, Y.; Mao, Q.; Wang, L.; Wang, F.; et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres. Appl. Surf. Sci. 2019, 495, 143481. [Google Scholar] [CrossRef]
- Ahmed, A.; Hossain, M.M.; Adak, B.; Mukhopadhyay, S. Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chem. Mater. 2020, 32, 10296–10320. [Google Scholar] [CrossRef]
- Hu, J.; Gao, Q.; Xu, L.; Wang, M.; Zhang, M.; Zhang, K.; Liu, W.; Wu, G. Functionalization of cotton fabrics with highly durable polysiloxane–TiO2 hybrid layers: Potential applications for photo-induced water–oil separation, UV shielding, and self-cleaning. J. Mater. Chem. A 2018, 6, 6085–6095. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Tang, R.-C.; Zhang, J. Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind. Crops Prod. 2015, 64, 224–232. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, R.-C. Natural Flavonoid-Functionalized Silk Fiber Presenting Antibacterial, Antioxidant, and UV Protection Performance. ACS Sustain. Chem. Eng. 2017, 5, 10518–10526. [Google Scholar] [CrossRef]
- Haque, M.A.; Mia, R.; Mahmud, S.T.; Bakar, M.A.; Ahmed, T.; Farsee, M.S.; Hossain, M.I. Sustainable dyeing and functionalization of wool fabrics with black rice extract. Resour. Environ. Sustain. 2022, 7, 100045. [Google Scholar] [CrossRef]
- Rosace, G.; Castellano, A.; Trovato, V.; Iacono, G.; Malucelli, G. Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydr. Polym. 2018, 196, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.M.A.P.; Alcaraz-Espinoza, J.J.; Da Silva, F.A.G.; De Oliveira, H.P. Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 13783–13795. [Google Scholar] [CrossRef]
- Valle, J.A.B.; Valle, R.D.C.S.C.; Bierhalz, A.C.K.; Bezerra, F.M.; Hernandez, A.L.; Lis Arias, M.J. Chitosan microcapsules: Methods of the production and use in the textile finishing. J. Appl. Polym. Sci. 2021, 138, 50482. [Google Scholar] [CrossRef]
- Busolo, T.; Szewczyk, P.K.; Nair, M.; Stachewicz, U.; Kar-Narayan, S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886. [Google Scholar] [CrossRef]
- Mia, R.; Sk, M.S.; Sayed Oli, Z.B.; Ahmed, T.; Kabir, S.; Waqar, M.A. Functionalizing cotton fabrics through herbally synthesized nanosilver. Clean. Eng. Technol. 2021, 4, 100227. [Google Scholar] [CrossRef]
- Mai, Z.; Xiong, Z.; Shu, X.; Liu, X.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Zhang, M.; Xu, W.; et al. Multifunctionalization of cotton fabrics with Polyvinylsilsesquioxane/ZnO composite coatings. Carbohydr. Polym. 2018, 199, 516–525. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, W.; Wu, J.-M. Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. J. Hazard. Mater. 2018, 343, 285–297. [Google Scholar] [CrossRef]
- Emam, H.E.; Saleh, N.H.; Nagy, K.S.; Zahran, M.K. Functionalization of medical cotton by direct incorporation of silver nanoparticles. Int. J. Biol. Macromol. 2015, 78, 249–256. [Google Scholar] [CrossRef]
- Rosace, G.; Trovato, V.; Colleoni, C.; Caldara, M.; Re, V.; Brucale, M.; Piperopoulos, E.; Mastronardo, E.; Milone, C.; De Luca, G.; et al. Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor. Sens. Actuators B Chem. 2017, 252, 428–439. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Chen, Y.; Huang, Y.; Yang, F.; Lu, Z. Ultrasonic-microwave synthesis of ZnO/BiOBr functionalized cotton fabrics with antibacterial and photocatalytic properties. Carbohydr. Polym. 2018, 201, 162–171. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, R.; Mia, R.; Zhang, H.; Lü, S.; Yang, F.; Mahmud, S.; Liu, H. Eco-friendly dyeing and finishing of organic cotton fabric using natural dye (gardenia yellow) reduced-stabilized nanosilver: Full factorial design. Cellulose 2022, 29, 2663–2679. [Google Scholar] [CrossRef]
- Rejepov, D.T.; Vodyashkin, A.A.; Sergorodceva, A.V.; Stanishevskiy, Y.M. Biomedical Applications of Silver Nanoparticles (Review). Drug Dev. Regist. 2021, 10, 176–187. [Google Scholar] [CrossRef]
- Bashiri Rezaie, A.; Montazer, M.; Mahmoudi Rad, M. Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles. Clean. Technol. Environ. Policy 2018, 20, 2119–2133. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; El-Zairy, E.M.R.; Eid, B.M. Eco-friendly modification and antibacterial functionalization of viscose fabric. J. Text. Inst. 2017, 108, 1406–1411. [Google Scholar] [CrossRef]
- Tummino, M.L.; Varesano, A.; Copani, G.; Vineis, C. A Glance at Novel Materials, from the Textile World to Environmental Remediation. J. Polym. Environ. 2023, 31, 2826–2854. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Amin, H.A.; Abdel-Aziz, M.S.; Eid, B.M. A green approach for modification and functionalization of wool fabric using bio- and nano-technologies. Clean. Technol. Environ. Policy 2022, 24, 3287–3302. [Google Scholar] [CrossRef]
- Hasan, R.; Nishi, S.I.; Mia, R.; Islam, M.M.; Hasan, M.M.; Ahmed, F. Ecofriendly functionalization of jute–cotton blended yarn using Azadirachta Indica leaves. Environ. Technol. Innov. 2023, 29, 102959. [Google Scholar] [CrossRef]
- Fernandes, M.; Padrão, J.; Ribeiro, A.I.; Fernandes, R.D.V.; Melro, L.; Nicolau, T.; Mehravani, B.; Alves, C.; Rodrigues, R.; Zille, A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials 2022, 12, 1006. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.A.; Aly, A.A.; Eid, B.M.; Fahmy, H.M. Green Approach for Multifunctionalization of Cellulose-Containing Fabrics. Fibers Polym. 2018, 19, 2298–2306. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, X.; Zheng, H.; Liu, H. Eco-friendly colorization of textile originating from polydopamine nanofilm structural color with high colorfastness. J. Clean. Prod. 2021, 295, 126523. [Google Scholar] [CrossRef]
- Shahid, M.; Shahid-ul-Islam; Rather, L.J.; Manzoor, N.; Mohammad, F. Simultaneous shade development, antibacterial, and antifungal functionalization of wool using Punica granatum L. Peel extract as a source of textile dye. J. Nat. Fibers 2019, 16, 555–566. [Google Scholar] [CrossRef]
- Singh, G.; Mathur, P.; Singh, N.; Sheikh, J. Functionalization of wool fabric using kapok flower and bio-mordant. Sustain. Chem. Pharm. 2019, 14, 100184. [Google Scholar] [CrossRef]
- Xu, X.; Gong, J.; Li, Z.; Li, Q.; Zhang, J.; Wang, L.; Huang, J. Mordant Free Dyeing and Functionalization of Wool Fabrics with Biocolorants Derived from Apocynum venetum L. Bast. ACS Sustain. Chem. Eng. 2020, 8, 12686–12695. [Google Scholar] [CrossRef]
- Hossain, M.T.; Reza, S.; Islam, M.A.; Mohebbullah, M.; Islam, T. Progress and Prospects of Chemical Functionalization of Textiles Via Nanotechnology. ACS Appl. Eng. Mater. 2025, 3, 1–20. [Google Scholar] [CrossRef]
- Wu, R.; Ma, L.; Liu, X.Y. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Adv. Sci. 2022, 9, 2103981. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, D.; Hu, H.; Shang, J.; Chang, J.; Xie, C.; Yang, Y.; Lepró, X.; Baughman, R.H.; Zheng, Z. Additive Functionalization and Embroidery for Manufacturing Wearable and Washable Textile Supercapacitors. Adv. Funct. Mater. 2020, 30, 1910541. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; Abdel-Aziz, M.S. Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics. Appl. Surf. Sci. 2017, 392, 1126–1133. [Google Scholar] [CrossRef]
- Niemczyk-Soczynska, B.; Gradys, A.; Sajkiewicz, P. Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers 2020, 12, 2636. [Google Scholar] [CrossRef]
- Ielo, I.; Giacobello, F.; Sfameni, S.; Rando, G.; Galletta, M.; Trovato, V.; Rosace, G.; Plutino, M.R. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials 2021, 14, 2733. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Zhao, S.; Deng, L.; Zhang, J.; Dong, A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem. Eng. J. 2021, 420, 127680. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Yang, L.; Hao, D.; He, Z.; Sun, J.; Feng, Y.; Dai, H.; Jiang, L. Liquid as Plasma Mask for Constructing Arbitrary Area with Contrary Wettability on Hydrophobic Textiles. Adv. Funct. Mater. 2024, 34, 2310510. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Y. Durable antibacterial and hydrophobic polyester fibres and wearable textiles. Micro Nano Lett. 2018, 13, 1011–1016. [Google Scholar] [CrossRef]
- Zhang, G.; Quetzeri-Santiago, M.A.; Stone, C.A.; Botto, L.; Castrejón-Pita, J.R. Droplet impact dynamics on textiles. Soft Matter 2018, 14, 8182–8190. [Google Scholar] [CrossRef]
- Ahmad, D.; Van Den Boogaert, I.; Miller, J.; Presswell, R.; Jouhara, H. Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2686–2725. [Google Scholar] [CrossRef]
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Super-Hydrophobicity of Polyester Fabrics Driven by Functional Sustainable Fluorine-Free Silane-Based Coatings. Gels 2023, 9, 109. [Google Scholar] [CrossRef]
- Galante, A.J.; Haghanifar, S.; Romanowski, E.G.; Shanks, R.M.Q.; Leu, P.W. Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles. ACS Appl. Mater. Interfaces 2020, 12, 22120–22128. [Google Scholar] [CrossRef]
- Antunes, J.; Matos, K.; Carvalho, I.; Carvalho, S.; Ferreira, F.; Cruz, S.M.A. Physical Vapor Deposition Technology in Personal Protective Equipment Production: Improved Antibacterial and Hydrophobic Character of Textiles. Coatings 2022, 12, 1399. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, L.; Shi, C.; Wu, C.; Long, Z.; Qiao, H.; Wang, K.; Fan, Q.H. Nature-Inspired Hierarchical Protrusion Structure Construction for Washable and Wear-Resistant Superhydrophobic Textiles with Self-Cleaning Ability. ACS Appl. Mater. Interfaces 2021, 13, 18142–18151. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Yang, L.; Huang, W.; Bu, Y.; Chen, D.; Huang, J.; Zhou, Y.; Xu, W. Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose 2017, 24, 2635–2646. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Q.; Zhang, Z.; Wang, X.; Niu, H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. Adv. Fiber Mater. 2023, 5, 1555–1591. [Google Scholar] [CrossRef]
- Ruzafa-Silvestre, C.; Juan-Fernández, B.; Carbonell-Blasco, M.P.; Bañón-Gil, E.; Orgilés-Calpena, E.; Arán-Ais, F. Organosilicon-Based Plasma Nanocoating on Crust Leather for Water-Repellent Footwear. Materials 2022, 15, 7255. [Google Scholar] [CrossRef]
- Mizerska, U.; Fortuniak, W.; Makowski, T.; Svyntkivska, M.; Piorkowska, E.; Kowalczyk, D.; Brzezinski, S. Electrically conductive and hydrophobic rGO-containing organosilicon coating of cotton fabric. Prog. Org. Coat. 2019, 137, 105312. [Google Scholar] [CrossRef]
- Prorokova, N.P.; Kumeeva, T.Y.; Kholodkov, I.V.; Buznik, V.M. Control of the Hydrophobic Properties of Polyester Fabric Coatings Deposited Using Polytetrafluoroethylene Telomers and Silica Nanoparticles. Theor. Found. Chem. Eng. 2022, 56, 872–880. [Google Scholar] [CrossRef]
- Anjum, A.S.; Sun, K.C.; Ali, M.; Riaz, R.; Jeong, S.H. Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications. Chem. Eng. J. 2020, 401, 125859. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, Z.; Sun, Y.; Yang, H.; Zhang, H.; Dou, H.; Zhang, L. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method. Appl. Surf. Sci. 2018, 441, 554–563. [Google Scholar] [CrossRef]
- Kredel, J.; Schmitt, D.; Schäfer, J.-L.; Biesalski, M.; Gallei, M. Cross-Linking Strategies for Fluorine-Containing Polymer Coatings for Durable Resistant Water- and Oil-Repellency. Polymers 2021, 13, 723. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. Hydrophobic materials and coatings: Principles of design, properties and applications. Russ. Chem. Rev. 2008, 77, 583–600. [Google Scholar] [CrossRef]
- Chruściel, J.J. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers 2022, 14, 4382. [Google Scholar] [CrossRef]
- Zille, A.; Oliveira, F.R.; Souto, A.P. Plasma Treatment in Textile Industry: Plasma Treatment in Textile Industry. Plasma Process. Polym. 2015, 12, 98–131. [Google Scholar] [CrossRef]
- Deo, D.; Singh, S.P.; Mohanty, S.; Guhathakurata, S.; Pal, D.; Mallik, S. Biomimicking of phyto-based super-hydrophobic surfaces towards prospective applications: A review. J. Mater. Sci. 2022, 57, 8569–8596. [Google Scholar] [CrossRef]
- Wei, D.W.; Wei, H.; Gauthier, A.C.; Song, J.; Jin, Y.; Xiao, H. Superhydrophobic modification of cellulose and cotton textiles. J. Bioresour. Bioprod. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Saha, P.K.; Mia, R.; Zhou, Y.; Ahmed, T. Functionalization of hydrophobic nonwoven cotton fabric for oil and water repellency. SN Appl. Sci. 2021, 3, 586. [Google Scholar] [CrossRef]
- Liu, M.; Ma, C.; Zhou, D.; Chen, S.; Zou, L.; Wang, H.; Wu, J. Hydrophobic, breathable cellulose nonwoven fabrics for disposable hygiene applications. Carbohydr. Polym. 2022, 288, 119367. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, L.; Hu, S.; Peng, F.; Zhang, X.; Yang, H.; Sui, X.; Dai, Y.; Zhou, P.; Qi, H. Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance. ACS Appl. Mater. Interfaces 2022, 14, 34049–34058. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Zhai, Y.; Zhang, Y. A green approach to preparing hydrophobic, electrically conductive textiles based on waterborne polyurethane for electromagnetic interference shielding with low reflectivity. Chem. Eng. J. 2021, 421, 127749. [Google Scholar] [CrossRef]
- Matijaković Mlinarić, N.; Wawrzaszek, B.; Kowalska, K.; Selmani, A.; Učakar, A.; Vidmar, J.; Kušter, M.; Van De Velde, N.; Trebše, P.; Sever Škapin, A.; et al. Poly(Allylamine Hydrochloride) and ZnO Nanohybrid Coating for the Development of Hydrophobic, Antibacterial, and Biocompatible Textiles. Nanomaterials 2024, 14, 570. [Google Scholar] [CrossRef]
- Ye, C.; Liu, D.; Peng, X.; Jiang, Y.; Cheng, R.; Ning, C.; Sheng, F.; Zhang, Y.; Dong, K.; Wang, Z.L. A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano 2021, 15, 18172–18181. [Google Scholar] [CrossRef]
- Sheraz, M.; Choi, B.; Kim, J. Enhancing Textile Water Repellency with Octadecyltrichlorosilane (OTS) and Hollow Silica Nanoparticles. Polymers 2023, 15, 4065. [Google Scholar] [CrossRef]
- Pal, S.; Mondal, S.; Pal, P.; Das, A.; Maity, J. Fabrication of AgNPs/Silane coated mechanical and washing durable hydrophobic cotton textile for self-cleaning and oil-water separation application. J. Indian. Chem. Soc. 2022, 99, 100283. [Google Scholar] [CrossRef]
- Gonçalves, J.; Torres, N.; Silva, S.; Gonçalves, F.; Noro, J.; Cavaco-Paulo, A.; Ribeiro, A.; Silva, C. Zein impart hydrophobic and antimicrobial properties to cotton textiles. React. Funct. Polym. 2020, 154, 104664. [Google Scholar] [CrossRef]
- Forsman, N.; Johansson, L.-S.; Koivula, H.; Tuure, M.; Kääriäinen, P.; Österberg, M. Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydr. Polym. 2020, 227, 115363. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.A.; Philipchenko, A.B. Superhydrophobic chitosan-based coatings for textile processing. Appl. Surf. Sci. 2012, 263, 783–787. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Kandola, B.K.; Davies, P.J.; Zhang, S.; Padbury, S.A. Developments in flame retardant textiles–a review. Polym. Degrad. Stab. 2005, 88, 3–12. [Google Scholar] [CrossRef]
- Qi, P.; Chen, F.; Li, Y.; Li, H.; Gu, X.; Sun, J.; Zhang, S. A Review of Durable Flame-Retardant Fabrics by Finishing: Fabrication Strategies and Challenges. Adv. Fiber Mater. 2023, 5, 731–763. [Google Scholar] [CrossRef]
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, H.; Wang, Y. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.A.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame retardant materials. Mater. Sci. Eng. B 2021, 274, 115460. [Google Scholar] [CrossRef]
- Liang, S.; Neisius, N.M.; Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 2013, 76, 1642–1665. [Google Scholar] [CrossRef]
- Norouzi, M.; Zare, Y.; Kiany, P. Nanoparticles as Effective Flame Retardants for Natural and Synthetic Textile Polymers: Application, Mechanism, and Optimization. Polym. Rev. 2015, 55, 531–560. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.A.; El-Sayed, F.; Mohamed, M.; Osama, R.; Elmahdy, E.; Abd-Ellah, M.; El-Seedi, H.R.; Hawash, H.B.; Ameen, H. Recent advances in nanobased flame-retardant coatings for textile fabrics. Nano-Struct. Nano-Objects 2024, 38, 101180. [Google Scholar] [CrossRef]
- Malucelli, G.; Bosco, F.; Alongi, J.; Carosio, F.; Di Blasio, A.; Mollea, C.; Cuttica, F.; Casale, A. Biomacromolecules as novel green flame retardant systems for textiles: An overview. RSC Adv. 2014, 4, 46024–46039. [Google Scholar] [CrossRef]
- Malucelli, G. Bio-Sourced Flame Retardants for Textiles: Where We Are and Where We Are Going. Molecules 2024, 29, 3067. [Google Scholar] [CrossRef]
- Alongi, J.; Malucelli, G. State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J. Mater. Chem. 2012, 22, 21805–21809. [Google Scholar] [CrossRef]
- Özer, M.S.; Gaan, S. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Prog. Org. Coat. 2022, 171, 107027. [Google Scholar] [CrossRef]
- Read, N.J.; Heighway-Bury, E.G. Flameproofing of Textile Fabrics with particular reference to the Function of Antimony Compounds. J. Soc. Dye. Colour. 1958, 74, 823–829. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-S.; Jeong, W. Study on the Flame Retardancy and Hazard Evaluation of Poly(acrylonitrile-co-vinylidene chloride) Fibers by the Addition of Antimony-Based Flame Retardants. Polymers 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Baillet, C.; Delfosse, L. The combustion of polyolefins filled with metallic hydroxides and antimony trioxide. Polym. Degrad. Stab. 1990, 30, 89–99. [Google Scholar] [CrossRef]
- Xie, K.; Gao, A.; Zhang, Y. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr. Polym. 2013, 98, 706–710. [Google Scholar] [CrossRef]
- Kasem, M.A.; Richards, H.R. Flame-Retardants for Fabrics. Function of Boron-Containing Additives. Prod. RD 1972, 11, 114–133. [Google Scholar] [CrossRef]
- Gaan, S.; Sun, G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym. Degrad. Stab. 2007, 92, 968–974. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Shi, J.; Rao, W. Fabrication of eco-friendly flame-retardant and hydrophobic coating for cotton fabric. Cellulose 2023, 30, 3267–3280. [Google Scholar] [CrossRef]
- Cheng, X.-W.; Song, J.-Y.; Cui, M.-L.; Dong, S.; Guan, J.-P. Reactive phytate-based intumescent flame-retardant toward sustainable and durable functional coating of silk fabric. Mater. Today Sustain. 2023, 24, 100528. [Google Scholar] [CrossRef]
- Liu, K.; Lu, Y.; Cheng, Y.; Li, J.; Zhang, G.; Zhang, F. Flame retardancy and mechanism of polymer flame retardant containing P–N bonds for cotton fabrics modified by chemical surface grafting. Cellulose 2024, 31, 3243–3258. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, Y.; Li, J.; Ding, D.; Liu, Y.; Zhang, G.; Zhang, F. Synthesis and evaluation of an eco-friendly and durable flame-retardant cotton fabrics based on a high-phosphorous-content. J. Colloid. Interface Sci. 2023, 640, 688–697. [Google Scholar] [CrossRef]
- Zain, G.; Jordanov, I.; Bischof, S.; Magovac, E.; Šišková, A.O.; Vykydalová, A.; Kleinová, A.; Mičušík, M.; Mosnáčková, K.; Nováčiková, J.; et al. Flame-retardant finishing of cotton fabric by surface-initiated photochemically induced atom transfer radical polymerization. Cellulose 2023, 30, 2529–2550. [Google Scholar] [CrossRef]
- Zhao, B.; Kolibaba, T.J.; Lazar, S.; Grunlan, J.C. Environmentally-benign, water-based covalent polymer network for flame retardant cotton. Cellulose 2021, 28, 5855–5866. [Google Scholar] [CrossRef]
- Ortelli, S.; Malucelli, G.; Cuttica, F.; Blosi, M.; Zanoni, I.; Costa, A.L. Coatings made of proteins adsorbed on TiO2 nanoparticles: A new flame retardant approach for cotton fabrics. Cellulose 2018, 25, 2755–2765. [Google Scholar] [CrossRef]
- Goda, E.S.; Abu Elella, M.H.; Hong, S.E.; Pandit, B.; Yoon, K.R.; Gamal, H. Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 2021, 28, 5087–5105. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.; Lu, Z.; Tian, Q.; Shao, J. In Situ Synthesis of Silver Nanoparticles on Flame-Retardant Cotton Textiles Treated with Biological Phytic Acid and Antibacterial Activity. Materials 2022, 15, 2537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xing, T.; Huang, Z.; He, A.; Luo, Y.; Hong, Y.; Wang, M.; Shi, Z.; Tong, A.; Qiao, S.; et al. An innovative strategy towards highly efficient flame-retardant silk. Chem. Eng. J. 2024, 489, 151356. [Google Scholar] [CrossRef]
№ | Name | Method Description | Controlled Variable | Notes |
---|---|---|---|---|
1 | Horizontal flame test (HFT) | The essence of the method is to ignite the fabric in a horizontal configuration for some time (usually 12 s). | The time of the residual flame, the speed of flame propagation, the mass of the residue and the length of charring can additionally be analysed. | There is a standard ASTM D4986, etc. |
2 | Vertical flame test (VFT) | The essence of the method is to ignite the fabric in a vertical configuration for some time (usually 12 s). | The time it takes for the flame to travel a certain distance is controlled, and the mass of the residue and the length of charring can additionally be analysed. | There is a standard ASTM D 6413-08, ASTM D6413-99, etc. |
3 | Limiting oxygen index (LOI) | The test is conducted within a specialised atmospheric chamber, where the oxygen level is gradually reduced until the flame on the material is extinguished. | The minimum oxygen content in the atmosphere required to sustain combustion of the material is 21%. This indicator is related to the oxygen content in the atmosphere. If it is higher than 21%, then the material is considered to have increased fire resistance. | There is a standard ISO 4589:1996, ASTM D 2863, ASTM D2863-2000, etc. |
4 | Cone calorimeter and Micro cone calorimeter (MCC) | This method involves measuring the rate at which heat is released when materials burn. The consumption of oxygen during the combustion process is what this method is related to. | Maximum heat release rate (PHRR), heat release rate (HRR) and total heat release (THR), fire propagation rate (FGR), etc. | There is a standard ISO 5660-1, ASTM D 7309, etc. |
5 | The 45° Angle Test | The essence of the method is to ignite a tissue sample, which is held at an angle of 45° in a ventilated chamber. | The flame propagation time, including ignition, is measured. | There is a standard AATCC 1933–1962 |
6 | Thermogravimetric (TG) analysis | The method is based on controlled heating of textile material in various atmospheres (air, oxygen, nitrogen and argon are usually used) | It allows you to establish the thermal stability of a textile material, as well as to estimate the mass amounts of material loss at various temperatures. | Special equipment is required. |
7 | TG-FTIR analysis | The method is predicated on the detection of infrared spectra at a range of temperatures. | The apparatus provides control of groups and valence bonds, which can be used to analyse released substances during the heating of textile material. | Special equipment is required. |
8 | Smoke Test | The fundamental principle of the method involves the vertical fixation of the sample, followed by its exposure to flame at a distance of no more than 2.5 cm. | The density of the smoke released is measured. Photometric methods have been employed to regulate this phenomenon. | |
9 | The Metal Cylinder | The fundamental principle of the method is predicated on the placement of a steel cylinder, which is heated to a temperature of 800 °C for a duration of 12 s. | A rigorous experimental process is undertaken to ascertain the combustion time and charring area of the textile material. | This method can be considered relatively exotic. The material is utilised in the manufacture of specialised protective equipment, carpets and outerwear. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodyashkin, A.A.; Makeev, M.O. Advanced Post-Processing Techniques for Hydrophobic and Flame-Retardant Textiles. Polymers 2025, 17, 2744. https://doi.org/10.3390/polym17202744
Vodyashkin AA, Makeev MO. Advanced Post-Processing Techniques for Hydrophobic and Flame-Retardant Textiles. Polymers. 2025; 17(20):2744. https://doi.org/10.3390/polym17202744
Chicago/Turabian StyleVodyashkin, Andrey A., and Mstislav O. Makeev. 2025. "Advanced Post-Processing Techniques for Hydrophobic and Flame-Retardant Textiles" Polymers 17, no. 20: 2744. https://doi.org/10.3390/polym17202744
APA StyleVodyashkin, A. A., & Makeev, M. O. (2025). Advanced Post-Processing Techniques for Hydrophobic and Flame-Retardant Textiles. Polymers, 17(20), 2744. https://doi.org/10.3390/polym17202744