Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Degree of Substitution (DS) of CA
2.3. Degree of Deacetylation (DDA) of CS
2.4. Sample Preparation
2.5. Methods and Equipment
2.5.1. Viscosity
2.5.2. Surface Tension
2.5.3. Structural Characterization
2.5.4. Morphological Characterization
2.5.5. Water Vapor Permeability
2.5.6. Solvophilicity Behavior
2.5.7. Thermal Behavior
2.5.8. Mechanical Behavior
2.5.9. Bioactivity Assay
2.5.10. Statistical Analysis
3. Results
3.1. Structure of the Materials
3.2. Morphology
3.3. Solvophilicity Behavior
3.4. Water Vapor Permeability
3.5. Mechanical Behavior of Films
3.6. Antimicrobial Activity Against Gram-Negative E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shchipunov, Y. Bionanocomposites: Green Sustainable Materials for the near Future. Pure Appl. Chem. 2012, 84, 2579–2607. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, T.; Cheng, Y.; Zhao, K.; Meng, Z.; Huang, J.; Cai, W.; Lai, Y. Recent Advances in Functional Cellulose-Based Materials: Classification, Properties, and Applications. Adv. Fiber Mater. 2024, 6, 1343–1368. [Google Scholar] [CrossRef]
- Marinho, E. Cellulose: A comprehensive review of its properties and applications. Sustain. Chem. Environ. 2025, 11, 100283. [Google Scholar] [CrossRef]
- Ndlovu, S.P.; Alven, S.; Hlalisa, K.; Aderibigbe, B.A. Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration. Curr. Drug Deliv. 2024, 21, 1226–1240. [Google Scholar] [CrossRef] [PubMed]
- Oldal, D.G.; Topuz, F.; Holtzl, T.; Szekely, G. Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity. ACS Sustain. Chem. Eng. 2023, 11, 994–1005. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, S.; Cai, H.; Wu, Y.; Pan, Q.; Lin, H.; Fang, J.; He, Y.; Deng, H.; Liu, Z. Chitosan/Silk Fibroin Biomimic Scaffolds Reinforced by Cellulose Acetate Nanofibers for Smooth Muscle Tissue Engineering. Carbohydr. Polym. 2022, 298, 120056. [Google Scholar] [CrossRef]
- Gomes, V.; Pires, A.S.; Mateus, N.; de Freitas, V.; Cruz, L. Pyranoflavylium-Cellulose Acetate Films and the Glycerol Effect towards the Development of PH-Freshness Smart Label for Food Packaging. Food Hydrocoll. 2022, 127, 107501. [Google Scholar] [CrossRef]
- Ravichandran, S.; Sengodan, P.; Saravanan, A.; Vickram, S.; Chopra, H. Antibacterial Food Packaging Using Biocompatible Nickel Oxide-Infused Cellulose Acetate Electrospun Nanofibers. Food Chem. 2025, 472, 142888. [Google Scholar] [CrossRef]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. [Google Scholar] [CrossRef]
- Charvet, A.; Vergelati, C.; Long, D.R. Mechanical and Ultimate Properties of Injection Molded Cellulose Acetate/Plasticizer Materials. Carbohydr. Polym. 2019, 204, 182–189. [Google Scholar] [CrossRef]
- Sengupta, T.; Han, J.H. Surface Chemistry of Food, Packaging, and Biopolymer Materials. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2014; pp. 51–86. [Google Scholar]
- Rafique, A.; Sequeira, I.; Bento, A.S.; Moniz, M.P.; Carmo, J.; Oliveira, E.; Oliveira, J.P.; Marques, A.; Ferreira, I.; Baptista, A.C. A Facile Blow Spinning Technique for Green Cellulose Acetate/Polystyrene Composite Separator for Flexible Energy Storage Devices. Chem. Eng. J. 2023, 464, 142515. [Google Scholar] [CrossRef]
- Bolloli, M.; Antonelli, C.; Molméret, Y.; Alloin, F.; Iojoiu, C.; Sanchez, J.-Y. Nanocomposite Poly(Vynilidene Fluoride)/Nanocrystalline Cellulose Porous Membranes as Separators for Lithium-Ion Batteries. Electrochim. Acta 2016, 214, 38–48. [Google Scholar] [CrossRef]
- Yvonne, T.; Zhang, C.; Zhang, C.; Omollo, E.; Ncube, S. Properties of Electrospun PVDF/PMMA/CA Membrane as Lithium Based Battery Separator. Cellulose 2014, 21, 2811–2818. [Google Scholar] [CrossRef]
- An, Y.; Li, F.; Di, Y.; Zhang, X.; Lu, J.; Wang, L.; Yan, Z.; Wang, W.; Liu, M.; Fei, P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules 2024, 29, 5127. [Google Scholar] [CrossRef]
- Ding, B.; Li, C.; Hotta, Y.; Kim, J.; Kuwaki, O.; Shiratori, S. Conversion of an Electrospun Nanofibrous Cellulose Acetate Mat from a Super-Hydrophilic to Super-Hydrophobic Surface. Nanotechnology 2006, 17, 4332–4339. [Google Scholar] [CrossRef]
- Lee, H.; Nishino, M.; Sohn, D.; Lee, J.S.; Kim, I.S. Control of the Morphology of Cellulose Acetate Nanofibers via Electrospinning. Cellulose 2018, 25, 2829–2837. [Google Scholar] [CrossRef]
- Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. [Google Scholar] [CrossRef]
- Daristotle, J.L.; Behrens, A.M.; Sandler, A.D.; Kofinas, P. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963. [Google Scholar] [CrossRef]
- Nikolić, N.; Olmos, D.; González-Benito, J. Key Advances in Solution Blow Spinning of Polylactic-Acid-Based Materials: A Prospective Study on Uses and Future Applications. Polymers 2024, 16, 3044. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X.-X.; Huang, L.-P.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Recent Progress and Challenges in Solution Blow Spinning. Mater. Horiz. 2021, 8, 426–446. [Google Scholar] [CrossRef]
- Kramar, A.; Luxbacher, T.; González-Benito, J. Solution Blow Co-Spinning of Cellulose Acetate with Poly(Ethylene Oxide). Structure, Morphology, and Properties of Nanofibers. Carbohydr. Polym. 2023, 320, 121225. [Google Scholar] [CrossRef]
- Kramar, A.; González-Benito, J. Preparation of Cellulose Acetate Film with Dual Hydrophobic-Hydrophilic Properties Using Solution Blow Spinning. Mater. Des. 2023, 227, 111788. [Google Scholar] [CrossRef]
- Claro, P.I.C.; Cunha, I.; Paschoalin, R.T.; Gaspar, D.; Miranda, K.; Oliveira, O.N.; Martins, R.; Pereira, L.; Marconcini, J.M.; Fortunato, E.; et al. Ionic Conductive Cellulose Mats by Solution Blow Spinning as Substrate and a Dielectric Interstrate Layer for Flexible Electronics. ACS Appl. Mater. Interfaces 2021, 13, 26237–26246. [Google Scholar] [CrossRef] [PubMed]
- Dadol, G.C.; Kilic, A.; Tijing, L.D.; Lim, K.J.A.; Cabatingan, L.K.; Tan, N.P.B.; Stojanovska, E.; Polat, Y. Solution Blow Spinning (SBS) and SBS-Spun Nanofibers: Materials, Methods, and Applications. Mater. Today Commun. 2020, 25, 101656. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Joly, C.; Oulahal, N.; Degraeve, P. Nisin as a Food Preservative: Part 2: Antimicrobial Polymer Materials Containing Nisin. Crit. Rev. Food Sci. Nutr. 2016, 56, 1275–1289. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential Oils as Additives in Biodegradable Films and Coatings for Active Food Packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Cao, G.; Lin, H.; Kannan, P.; Wang, C.; Zhong, Y.; Huang, Y.; Guo, Z. Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films. Langmuir 2018, 34, 14537–14545. [Google Scholar] [CrossRef]
- Zhang, W.; Sani, M.A.; Zhang, Z.; McClements, D.J.; Jafari, S.M. High Performance Biopolymeric Packaging Films Containing Zinc Oxide Nanoparticles for Fresh Food Preservation: A Review. Int. J. Biol. Macromol. 2023, 230, 123188. [Google Scholar] [CrossRef]
- Zhang, W.; Rhim, J.-W. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films. Food Packag. Shelf Life 2022, 31, 100806. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Modak, C.; Singh, P.K.; Kumar, R.; Khatri, D.; Singh, S.B. Underscoring the Immense Potential of Chitosan in Fighting a Wide Spectrum of Viruses: A Plausible Molecule against SARS-CoV-2? Int. J. Biol. Macromol. 2021, 179, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Tong, H.; Lu, J.; Cheng, Y.; Qian, F.; Tao, Y.; Wang, H. Preparation of bio-based cellulose acetate/chitosan composite film with oxygen and water resistant properties. Carbohydr. Polym. 2021, 270, 118381. [Google Scholar] [CrossRef] [PubMed]
- Cazón, P.; Vázquez, M. Mechanical and Barrier Properties of Chitosan Combined with Other Components as Food Packaging Film. Environ. Chem. Lett. 2020, 18, 257–267. [Google Scholar] [CrossRef]
- Kurek, M.; Ščetar, M.; Voilley, A.; Galić, K.; Debeaufort, F. Barrier Properties of Chitosan Coated Polyethylene. J. Memb. Sci. 2012, 403–404, 162–168. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; de la Caba, K. Functional Properties of Chitosan-Based Films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef]
- Samios, E.; Dart, R.K.; Dawkins, J.V. Preparation, Characterization and Biodegradation Studies on Cellulose Acetates with Varying Degrees of Substitution. Polymer 1997, 38, 3045–3054. [Google Scholar] [CrossRef]
- Yuan, Y.; Chesnutt, B.M.; Haggard, W.O.; Bumgardner, J.D. Deacetylation of Chitosan: Material Characterization and in Vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials 2011, 4, 1399–1416. [Google Scholar] [CrossRef]
- Domínguez, J.E.; Olivos, E.; Vázquez, C.; Rivera, J.M.; Hernández-Cortes, R.; González-Benito, J. Automated Low-Cost Device to Produce Sub-Micrometric Polymer Fibers Based on Blow Spun Method. HardwareX 2021, 10, e00218. [Google Scholar] [CrossRef]
- ISO 4288:1996; Geometrical Product Specifications (GPS), Surface Texture: Profile Method, Rules and Procedures for the Assessment of Surface Texture. ISO (International Organization for Standardization): Geneva, Switzerland, 1996.
- Nikolić, N.; Olmos, D.; Kramar, A.; González-Benito, J. Effect of Collector Rotational Speed on the Morphology and Structure of Solution Blow Spun Polylactic Acid (PLA). Polymers 2024, 16, 191. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Polymers, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9781895198928. [Google Scholar]
- Lupa, D.; Płaziński, W.; Michna, A.; Wasilewska, M.; Pomastowski, P.; Gołębiowski, A.; Buszewski, B.; Adamczyk, Z. Chitosan Characteristics in Electrolyte Solutions: Combined Molecular Dynamics Modeling and Slender Body Hydrodynamics. Carbohydr. Polym. 2022, 292, 119676. [Google Scholar] [CrossRef]
- ISO 2528:2017; Sheet Materials, Determination of Water Vapour Transmission Rate (WVTR), Gravimetric (Dish) Method. ISO (International Organization for Standardization): Geneva, Switzerland, 2017.
- Cerqueira, D.A.; Rodrigues Filho, G.; Assunção, R.M.N. A New Value for the Heat of Fusion of a Perfect Crystal of Cellulose Acetate. Polym. Bull. 2006, 56, 475–484. [Google Scholar] [CrossRef]
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. ISO (International Organization for Standardization): Geneva, Switzerland, 2011.
- ASTM E2149-20; Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions. ASTM International: West Conshohocken, PA, USA, 2020.
- Montoya-Escobar, N.; Ospina-Acero, D.; Velásquez-Cock, J.A.; Gómez-Hoyos, C.; Serpa Guerra, A.; Gañan Rojo, P.F.; Vélez Acosta, L.M.; Escobar, J.P.; Correa-Hincapié, N.; Triana-Chávez, O.; et al. Use of Fourier Series in X-Ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources. Polymers 2022, 14, 5199. [Google Scholar] [CrossRef]
- Prakash, J.; Venkataprasanna, K.S.; Bharath, G.; Banat, F.; Niranjan, R.; Venkatasubbu, G.D. In-Vitro Evaluation of Electrospun Cellulose Acetate Nanofiber Containing Graphene Oxide/TiO2/Curcumin for Wound Healing Application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127166. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, C.; Xue, Y.; Gao, R.; Zhang, X. Determination of the Degree of Deacetylation of Chitin and Chitosan by X-Ray Powder Diffraction. Carbohydr. Res. 2005, 340, 1914–1917. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative Analysis of Cellulose Acetate with a High Degree of Substitution by FTIR and Its Application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Scandola, M.; Ceccorulli, G. Viscoelastic Properties of Cellulose Derivatives: 1. Cellulose Acetate. Polymer 1985, 26, 1953–1957. [Google Scholar] [CrossRef]
- Zafar, M.; Ali, M.; Khan, S.M.; Jamil, T.; Butt, M.T.Z. Effect of Additives on the Properties and Performance of Cellulose Acetate Derivative Membranes in the Separation of Isopropanol/Water Mixtures. Desalination 2012, 285, 359–365. [Google Scholar] [CrossRef]
- de Freitas, R.R.M.; Senna, A.M.; Botaro, V.R. Influence of Degree of Substitution on Thermal Dynamic Mechanical and Physicochemical Properties of Cellulose Acetate. Ind. Crops Prod. 2017, 109, 452–458. [Google Scholar] [CrossRef]
- Erdmann, R.; Kabasci, S.; Heim, H.-P. Thermal Properties of Plasticized Cellulose Acetate and Its β-Relaxation Phenomenon. Polymers 2021, 13, 1356. [Google Scholar] [CrossRef]
- Mucha, M.; Pawlak, A. Thermal Analysis of Chitosan and Its Blends. Thermochim. Acta 2005, 427, 69–76. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, X.; Tian, C.; Zhong, Y.; Yan, M.; Miao, C.; Wu, T.; Zhou, X. Preparation and Characterization of Porous Cellulose Acetate Nanofiber Hydrogels. Gels 2023, 9, 484. [Google Scholar] [CrossRef]
- Yamashita, Y.; Endo, T. Deacetylation Behavior of Binary Blend Films of Cellulose Acetate and Various Polymers. J. Appl. Polym. Sci. 2006, 100, 1816–1823. [Google Scholar] [CrossRef]
- Cunha, A.G.; Fernandes, S.C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Gandini, A. What Is the Real Value of Chitosan’s Surface Energy? Biomacromolecules 2008, 9, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.S.; Whang, H.S. Surface Wetting and Energy Properties of Cellulose Acetate, Polyester and Polypropylene Fibers. Int. Nonwovens J. 1999, 1, os-8. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R. Preparation of Chitosan/Cellulose Acetate Blend Hollow Fibers for Adsorptive Performance. J. Memb. Sci. 2005, 267, 68–77. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–555. [Google Scholar] [CrossRef]
- Tedeschi, G.; Guzman-Puyol, S.; Paul, U.C.; Barthel, M.J.; Goldoni, L.; Caputo, G.; Ceseracciu, L.; Athanassiou, A.; Heredia-Guerrero, J.A. Thermoplastic Cellulose Acetate Oleate Films with High Barrier Properties and Ductile Behaviour. Chem. Eng. J. 2018, 348, 840–849. [Google Scholar] [CrossRef]
- Toprak, C.; Agar, J.N.; Falk, M. State of Water in Cellulose Acetate Membranes. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1979, 75, 803. [Google Scholar] [CrossRef]
- Murphy, D.; de Pinho, M.N. An ATR-FTIR Study of Water in Cellulose Acetate Membranes Prepared by Phase Inversion. J. Memb. Sci. 1995, 106, 245–257. [Google Scholar] [CrossRef]
- Cindradewi, A.W.; Bandi, R.; Park, C.-W.; Park, J.-S.; Lee, E.-A.; Kim, J.-K.; Kwon, G.-J.; Han, S.-Y.; Lee, S.-H. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers 2021, 13, 2990. [Google Scholar] [CrossRef]
- Muthu, M.; Pushparaj, S.S.C.; Gopal, J.; Sivanesan, I. A Review on the Antimicrobial Activity of Chitosan Microspheres: Milestones Achieved and Miles to Go. J. Mar. Sci. Eng. 2023, 11, 1480. [Google Scholar] [CrossRef]
- Guarnieri, A.; Triunfo, M.; Scieuzo, C.; Ianniciello, D.; Tafi, E.; Hahn, T.; Zibek, S.; Salvia, R.; De Bonis, A.; Falabella, P. Antimicrobial Properties of Chitosan from Different Developmental Stages of the Bioconverter Insect Hermetia illucens. Sci. Rep. 2022, 12, 8084. [Google Scholar] [CrossRef]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
System | Viscosity (Pa·s) | Surface Tension (mN·m−1) |
---|---|---|
HAc-CA | 0.379 ± 0.031 | 40.2 ± 2.7 |
HAc-CA/CS-1 | 0.895 ± 0.073 | 41.5 ± 2.4 |
HAc-CA/CS-2 | 1.096 ± 0.086 | 43.6 ± 2.4 |
HAc-CA/CS-3 | 1.873 ± 0.145 | 45.6 ± 1.8 |
FA-CA | 0.239 ± 0.021 | 45.0 ± 2.2 |
FA-CA/CS-1 | 0.567 ± 0.046 | 45.6 ± 2.3 |
FA-CA/CS-2 | 0.876 ± 0.071 | 47.6 ± 2.3 |
FA-CA/CS-3 | 1.328 ± 0.109 | 50.0 ± 2.7 |
Sample | Tg (°C) | Tm (°C) | χ (%) |
---|---|---|---|
HAc-CA | 197 | 226 | 6.0 |
HAc-CA/CS-1 | 198 | 227 | 6.5 |
HAc-CA/CS-2 | 198 | 228 | 5.0 |
HAc-CA/CS-3 | - | 229 | 7.5 |
FA-CA | - | 229 | 15.3 |
FA-CA/CS-1 | - | 229 | 13.6 |
FA-CA/CS-2 | - | 229 | 11.5 |
FA-CA/CS-3 | - | 231 | 11.2 |
Sample | Ra (µm) | Rq (µm) | Rz (µm) |
---|---|---|---|
HAc-CA | 4.4 ± 0.7 | 5.9 ± 1.1 | 34.4 ± 9.5 |
HAc-CA/CS-1 | 5.5 ± 2.0 | 7.0 ± 2.4 | 36.1 ± 8.7 |
HAc-CA/CS-2 | 6.7 ± 2.1 | 8.5 ± 2.7 | 41.1 ± 16.4 |
HAc-CA/CS-3 | 10.0 ± 2.2 | 12.4 ± 2.2 | 58.8 ± 10.6 |
FA-CA | 4.2 ± 0.8 | 5.4 ± 1.0 | 29.2 ± 6.1 |
FA-CA/CS-1 | 4.5 ± 0.6 | 5.7 ± 0.9 | 29.4 ± 7.0 |
FA-CA/CS-2 | 4.7 ± 0.8 | 5.9 ± 1.0 | 29.5 ± 5.7 |
FA-CA/CS-3 | 5.5 ± 1.6 | 7.0 ± 1.9 | 34.3 ± 7.7 |
Sample | E (Mpa) | σmax (Mpa) | εf (%) |
---|---|---|---|
Hac-CA | 626 ± 14 | 27 ± 2 | 4.9 ± 0.5 |
Hac-CA/CS-1 | 545 ± 15 | 43 ± 6 | 10.3 ± 0.7 |
Hac-CA/CS-2 | 482 ± 55 | 56 ± 3 | 17.6 ± 1.8 |
Hac-CA/CS-3 | 467 ± 21 | 80 ± 1 | 19.3 ± 0.8 |
FA-CA | 946 ± 61 | 19 ± 3 | 2.1 ± 0.2 |
FA-CA/CS-1 | 633 ± 10 | 37 ± 2 | 9.9 ± 0.5 |
FA-CA/CS-2 | 619 ± 38 | 44 ± 1 | 10.2 ± 0.5 |
FA-CA/CS-3 | 538 ± 50 | 64 ± 5 | 12.9 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshfeghi Far, N.; Kramar, A.; González-Benito, J. Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging. Polymers 2025, 17, 2479. https://doi.org/10.3390/polym17182479
Moshfeghi Far N, Kramar A, González-Benito J. Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging. Polymers. 2025; 17(18):2479. https://doi.org/10.3390/polym17182479
Chicago/Turabian StyleMoshfeghi Far, Nasrin, Ana Kramar, and Javier González-Benito. 2025. "Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging" Polymers 17, no. 18: 2479. https://doi.org/10.3390/polym17182479
APA StyleMoshfeghi Far, N., Kramar, A., & González-Benito, J. (2025). Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging. Polymers, 17(18), 2479. https://doi.org/10.3390/polym17182479