Enhancing Antimicrobial and Antioxidant Properties of Chitosan-Based Films with 1-Methylimidazolium-Chitosan
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 3-(Carboxymethyl)-1-methyl-1H-imidazol-3-ium Bromide (MeImB)
2.3. Synthesis of Chitosan Derivative (CS-MeImB)
2.4. Synthesis and Characterization of Chitin Nanowhiskers (ChNw)
2.5. Film Preparation
2.6. Characterization
2.6.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.6.2. Infrared Spectroscopy
2.6.3. Elemental Analysis
2.6.4. Thermogravimetric Analysis
2.6.5. Differential Scanning Calorimetry
2.6.6. Zeta Potential Measurements
2.6.7. X-Ray Diffraction
2.6.8. Yellowness Index
2.6.9. Water Vapor Transmission
2.6.10. Mechanical Properties
2.6.11. Antioxidant Properties
2.6.12. Antimicrobial Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Chitosan Derivative
3.2. FTIR Analysis
3.3. Elemental Analysis
3.4. X-Ray Diffraction (XRD)
3.5. Thermogravimetric Analysis (TGA)
3.6. Differential Scanning Calorimetry (DSC)
3.7. Antioxidant Activity of Chitosan Derivative
3.8. Antimicrobial Activity of CS-MeImB
3.9. Characterization of Films
3.10. Thermogravimetric Analysis of Films
3.11. X-Ray Diffraction of the Films
3.12. Yellowness Index
3.13. Water Vapor Transmission
3.14. Mechanical Properties
3.15. Antioxidant Activity of Chitosan Films
3.16. Antimicrobial Activity of Chitosan Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Chiavari, C.; Benevelli, M.; Grazia, L.; Lanciotti, R. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials. Front. Microbiol. 2017, 8, 2206. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.D.; Brooks, A.E. Therapeutic Strategies to Combat Antibiotic Resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef]
- Namivandi-Zangeneh, R.; Wong, E.H.H.; Boyer, C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect. Dis. 2021, 7, 215–253. [Google Scholar] [CrossRef]
- Marinescu, M.; Popa, C.-V. Pyridine Compounds with Antimicrobial and Antiviral Activities. Int. J. Mol. Sci. 2022, 23, 5659. [Google Scholar] [CrossRef]
- Abd El-Hameed, R.H.; Sayed, A.I.; Mahmoud Ali, S.; Mosa, M.A.; Khoder, Z.M.; Fatahala, S.S. Synthesis of Novel Pyrroles and Fused Pyrroles as Antifungal and Antibacterial Agents. J. Enzym. Inhib. Med. Chem. 2021, 36, 2183–2198. [Google Scholar] [CrossRef]
- Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, Antimicrobial and Antiviral Evaluation of Substituted Imidazole Derivatives. Eur. J. Med. Chem. 2009, 44, 2347–2353. [Google Scholar] [CrossRef]
- Rusu, A.; Moga, I.-M.; Uncu, L.; Hancu, G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023, 15, 2554. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Zhao, X.; Dong, F.; Li, Q.; Guo, Z. Synthesis and Antioxidant Action of Chitosan Derivatives with Amino-Containing Groups via Azide-Alkyne Click Reaction and N-Methylation. Carbohydr. Polym. 2018, 199, 583–592. [Google Scholar] [CrossRef]
- Siwach, A.; Verma, P.K. Synthesis and Therapeutic Potential of Imidazole Containing Compounds. BMC Chem. 2021, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Sani, M.; Khezerlou, A.; McClements, D.J. Zeolitic Imidazolate Frameworks (ZIFs): Advanced Nanostructured Materials to Enhance the Functional Performance of Food Packaging Materials. Adv. Colloid Interface Sci. 2024, 327, 103153. [Google Scholar] [CrossRef]
- Van de Vliet, L.; Vackier, T.; Thevissen, K.; Decoster, D.; Steenackers, H.P. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics 2024, 13, 949. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, C.; Zhuo, L.; Zhang, Y.; Ying, J.Y. Imidazolium Salts: A Mild Reducing and Antioxidative Reagent. J. Am. Chem. Soc. 2008, 130, 12586–12587. [Google Scholar] [CrossRef] [PubMed]
- Riduan, S.N.N.; Zhang, Y. Imidazolium Salts and Their Polymeric Materials for Biological Applications. Chem. Soc. Rev. 2013, 42, 9055–9070. [Google Scholar] [CrossRef]
- Romano, S.; De Santis, S.; Martinelli, A.; Rocchi, L.A.; Rocco, D.; Sotgiu, G.; Orsini, M. Starch Films Plasticized by Imidazolium-Based Ionic Liquids: Effect of Mono- and Dicationic Structures and Different Anions. ACS Appl. Polym. Mater. 2023, 5, 8859–8868. [Google Scholar] [CrossRef]
- Anderson, E.B.; Long, T.E. Imidazole- and Imidazolium-Containing Polymers for Biology and Material Science Applications. Polymer 2010, 51, 2447–2454. [Google Scholar] [CrossRef]
- Alqahtani, N.F. Functionalized Imidazolium Ionic Liquids-Modified Chitosan Materials: From Synthesis Approaches to Applications. React. Funct. Polym. 2024, 194, 105779. [Google Scholar] [CrossRef]
- Wei, L.; Li, Q.; Chen, Y.; Zhang, J.; Mi, Y.; Dong, F.; Lei, C.; Guo, Z. Enhanced Antioxidant and Antifungal Activity of Chitosan Derivatives Bearing 6-O-Imidazole-Based Quaternary Ammonium Salts. Carbohydr. Polym. 2019, 206, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.; Chang, Y.-B.; Tsai, C.-L.; Fu, K.-Y.; Wang, S.-H.; Tseng, H.-J. Characterization and Biocompatibility of Chitosan Nanocomposites. Colloids Surf. B Biointerfaces 2011, 85, 198–206. [Google Scholar] [CrossRef]
- Matica, A.; Menghiu, G.; Ostafe, V. Biodegradability of Chitosan Based Products. New Front. Chem. 2017, 26, 75–86. [Google Scholar]
- Muñoz-Bonilla, A.; Echeverria, C.; Sonseca, Á.; Arrieta, M.P.; Fernández-García, M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials 2019, 12, 641. [Google Scholar] [CrossRef]
- Fernandez-Saiz, P.; Lagarón, J.M.; Ocio, M.J. Optimization of the Film-Forming and Storage Conditions of Chitosan as an Antimicrobial Agent. J. Agric. Food Chem. 2009, 57, 3298–3307. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Applications of Chitosan as Food Packaging Materials. In Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–123. [Google Scholar]
- Ma, Y.; Xu, S.; Yue, P.; Cao, H.; Zou, Y.; Wang, L.; Long, H.; Wu, S.; Ye, Q. Synthesis and Evaluation of Water-Soluble Imidazolium Salt Chitin with Broad-Spectrum Antimicrobial Activity and Excellent Biocompatibility for Infected Wound Healing. Carbohydr. Polym. 2023, 306, 120575. [Google Scholar] [CrossRef]
- Sakai, S.; Yamada, Y.; Zenke, T.; Kawakami, K. Novel Chitosan Derivative Soluble at Neutral PH and In-Situ Gellable via Peroxidase-Catalyzed Enzymatic Reaction. J. Mater. Chem. 2009, 19, 230–235. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Yang, S.; Luo, B.; Zhou, C. Liquid Crystalline Behaviors of Chitin Nanocrystals and Their Reinforcing Effect on Natural Rubber. ACS Sustain. Chem. Eng. 2018, 6, 325–336. [Google Scholar] [CrossRef]
- Ou, X.; Cai, J.; Tian, J.; Luo, B.; Liu, M. Superamphiphobic Surfaces with Self-Cleaning and Antifouling Properties by Functionalized Chitin Nanocrystals. ACS Sustain. Chem. Eng. 2020, 8, 6690–6699. [Google Scholar] [CrossRef]
- Watthanaphanit, A.; Supaphol, P.; Tamura, H.; Tokura, S.; Rujiravanit, R. Fabrication, Structure, and Properties of Chitin Whisker-reinforced Alginate Nanocomposite Fibers. J. Appl. Polym. Sci. 2008, 110, 890–899. [Google Scholar] [CrossRef]
- Zhong, T.; Wolcott, M.P.; Liu, H.; Wang, J. Developing Chitin Nanocrystals for Flexible Packaging Coatings. Carbohydr. Polym. 2019, 226, 115276. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Núñez, C.; Hevilla, V.; Zágora, J.; Plachá, D.; Muñoz-Bonilla, A.; Fernández-García, M. Functionalization of Chitosan-Chitin Nanowhiskers Films By Impregnation with Essential Oils Via Supercritical CO2. J. Polym. Environ. 2024, 33, 96–111. [Google Scholar] [CrossRef]
- Oliveira, F.F.D.; dos Santos, M.R.; Lalli, P.M.; Schmidt, E.M.; Bakuzis, P.; Lapis, A.A.M.; Monteiro, A.L.; Eberlin, M.N.; Neto, B.A.D. Charge-Tagged Acetate Ligands As Mass Spectrometry Probes for Metal Complexes Investigations: Applications in Suzuki and Heck Phosphine-Free Reactions. J. Org. Chem. 2011, 76, 10140–10147. [Google Scholar] [CrossRef]
- Ghosn, B.; Singh, A.; Li, M.; Vlassov, A.V.; Burnett, C.; Puri, N.; Roy, K. Efficient Gene Silencing in Lungs and Liver Using Imidazole-Modified Chitosan as a Nanocarrier for Small Interfering RNA. Oligonucleotides 2010, 20, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Wan, Y.; Zhao, M.; Liu, Y.; Zhang, S. Preparation and Characterization of Antimicrobial Chitosan-N-Arginine with Different Degrees of Substitution. Carbohydr. Polym. 2011, 83, 144–150. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; De La Caba, K. Functional Properties of Chitosan-Based Films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef]
- Muñoz-Nuñez, C.; Cuervo-Rodríguez, R.; Echeverría, C.; Fernández-García, M.; Muñoz-Bonilla, A. Synthesis and Characterization of Thiazolium Chitosan Derivative with Enhanced Antimicrobial Properties and Its Use as Component of Chitosan Based Films. Carbohydr. Polym. 2023, 302, 120438. [Google Scholar] [CrossRef]
- ASTM-D1925-70; Standard Test Method for Yellowness Indez of Plastics. American Society for Testing and Materials: West Conshohocken, PA, USA, 1988.
- ASTM E96-00e1; Standard Test Methods for Water Vapor Transmission of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Garcia, M.A.; Pinotti, A.; Zaritzky, N.E. Physicochemical, Water Vapor Barrier and Mechanical Properties of Corn Starch and Chitosan Composite Films. Starch-Stärke 2006, 58, 453–463. [Google Scholar] [CrossRef]
- Cazón, P.; Morales-Sanchez, E.; Velazquez, G.; Vázquez, M. Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. J. Chem. Educ. 2022, 99, 2403–2408. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically—Approved Standard, 9th ed.; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- ASTM E2149-20; Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions. ASTM International: West Conshohocken, PA, USA, 2020.
- No, H.K.; Young Park, N.; Ho Lee, S.; Meyers, S.P. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65–72. [Google Scholar] [CrossRef] [PubMed]
- do Amaral Sobral, P.J.; Gebremariam, G.; Drudi, F.; De Aguiar Saldanha Pinheiro, A.C.; Romani, S.; Rocculi, P.; Dalla Rosa, M. Rheological and Viscoelastic Properties of Chitosan Solutions Prepared with Different Chitosan or Acetic Acid Concentrations. Foods 2022, 11, 2692. [Google Scholar] [CrossRef] [PubMed]
- Bezrodnykh, E.A.; Vyshivannaya, O.V.; Berezin, B.B.; Blagodatskikh, I.V.; Tikhonov, V.E. A Walkway from Crayfish to Oligochitosan. Appl. Sci. 2023, 13, 3360. [Google Scholar] [CrossRef]
- Ma, B.; Tan, W.; Zhang, J.; Mi, Y.; Miao, Q.; Guo, Z. Preparation and Characterization of Chitosan Derivatives Bearing Imidazole Ring with Antioxidant, Antibacterial, and Antifungal Activities. Starch-Stärke 2023, 75, 2200204. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, L.; Zhang, Y.; Li, S.; Zhang, F.; Wang, J. Bifunctional Imidazole Cross-Linked Anion Exchange Membrane Based on Quaternized Chitosan with High Performance. J. Appl. Polym. Sci. 2025, 142, e56786. [Google Scholar] [CrossRef]
- Kwon, W.; Jeong, E. Detoxification Properties of Guanidinylated Chitosan Against Chemical Warfare Agents and Its Application to Military Protective Clothing. Polymers 2020, 12, 1461. [Google Scholar] [CrossRef] [PubMed]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of Chitosan and Chitosan-Nanoparticles on Post Harvest Quality of Banana Fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, J.; Mi, Y.; Miao, Q.; Tan, W.; Guo, Z. Preparation of Imidazole Acids Grafted Chitosan with Enhanced Antioxidant, Antibacterial and Antitumor Activities. Carbohydr. Polym. 2023, 315, 120978. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Elgammal, W.E.; Eid, A.M.; Alharbi, M.; Mohamed, A.E.; Alayafi, A.A.M.; Hassan, S.M.; Fouda, A. New Functionalized Chitosan with Thio-Thiadiazole Derivative with Enhanced Inhibition of Pathogenic Bacteria, Plant Threatening Fungi, and Improvement of Seed Germination. Chemistry 2023, 5, 1722–1744. [Google Scholar] [CrossRef]
- Salama, H.E.; Saad, G.R.; Sabaa, M.W. Synthesis, Characterization and Biological Activity of Schiff Bases Based on Chitosan and Arylpyrazole Moiety. Int. J. Biol. Macromol. 2015, 79, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fan, L.; Shi, L.; Wang, C.; Pan, Z.; Xu, C.; Yang, G. Synthesis, Characterization and Antifungal Activity of Imidazole Chitosan Derivatives. Carbohydr. Res. 2024, 544, 109238. [Google Scholar] [CrossRef]
- Song, J.; Feng, H.; Wu, M.; Chen, L.; Xia, W.; Zhang, W. Preparation and Characterization of Arginine-Modified Chitosan/Hydroxypropyl Methylcellose Antibacterial Film. Int. J. Biol. Macromol. 2020, 145, 750–758. [Google Scholar] [CrossRef]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef]
- Labidi, A.; Salaberria, A.M.; Fernandes, S.C.M.; Labidi, J.; Abderrabba, M. Microwave Assisted Synthesis of Poly(N-Vinylimidazole) Grafted Chitosan as an Effective Adsorbent for Mercury (II) Removal from Aqueous Solution: Equilibrium, Kinetic, Thermodynamics and Regeneration Studies. J. Dispers. Sci. Technol. 2020, 41, 828–840. [Google Scholar] [CrossRef]
- Pestov, A.V.; Mehaev, A.V.; Kodess, M.I.; Ezhikova, M.A.; Azarova, Y.A.; Bratskaya, S.Y. Imidazolyl Derivative of Chitosan with High Substitution Degree: Synthesis, Characterization and Sorption Properties. Carbohydr. Polym. 2016, 138, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, S. Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0824754808. [Google Scholar]
- Cerrada, M.L.; Sánchez-Chaves, M.; Ruiz, C.; Fernández-García, M. Glycopolymers Resultant from Ethylene-Vinyl Alcohol Copolymers: Degradation and Rheological Behavior in Bulk. Eur. Polym. J. 2008, 44, 2194–2201. [Google Scholar] [CrossRef]
- Sajomsang, W.; Tantayanon, S.; Tangpasuthadol, V.; Thatte, M.; Daly, W.H. Synthesis and Characterization of N-Aryl Chitosan Derivatives. Int. J. Biol. Macromol. 2008, 43, 79–87. [Google Scholar] [CrossRef]
- Islam, M.N.; Khan, M.N.; Mallik, A.K.; Rahman, M.M. Preparation of Bio-Inspired Trimethoxysilyl Group Terminated Poly(1-Vinylimidazole)-Modified-Chitosan Composite for Adsorption of Chromium (VI) Ions. J. Hazard. Mater. 2019, 379, 120792. [Google Scholar] [CrossRef]
- Sadeghpour, A.H.; Yavari, N. Synthesis and Characterization of Chitosan-Based Schiff Base Compounds with Aromatic Substituent Groups. Biomaterials 2009, 3, 517–524. [Google Scholar]
- Caner, H.; Yilmaz, E.; Yilmaz, O. Synthesis, Characterization and Antibacterial Activity of Poly(N-Vinylimidazole) Grafted Chitosan. Carbohydr. Polym. 2007, 69, 318–325. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Y.; Zhang, Z.; Li, C.; Mei, L.; Hou, R.; Liu, X.; Jiang, H. Effect of Chitosan and Its Water-Soluble Derivatives on Antioxidant Activity. Polymers 2024, 16, 867. [Google Scholar] [CrossRef]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. Biores. Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mawgoud, H.K.; AboulMagd, A.M.; Hemdan, M.M.; Farag, P.S.; Hassaballah, A.I. Synthesis of Novel Imidazole-Based Compounds via Using Sonication Technique: Influence of Chemical Reaction Manipulation, Antiproliferative Activity through Apoptosis Induction, Cell Migration Inhibition, and Antioxidant Properties. J. Mol. Struct. 2025, 1319, 139611. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, J.; Mi, Y.; Li, Q.; Guo, Z. Synthesis and Characterization of α-Lipoic Acid Grafted Chitosan Derivatives with Antioxidant Activity. React. Funct. Polym. 2022, 172, 105205. [Google Scholar] [CrossRef]
- Mi, Y.; Li, Q.; Miao, Q.; Tan, W.; Zhang, J.; Guo, Z. Enhanced Antifungal and Antioxidant Activities of New Chitosan Derivatives Modified with Schiff Base Bearing Benzenoid/Heterocyclic Moieties. Int. J. Biol. Macromol. 2022, 208, 586–595. [Google Scholar] [CrossRef]
- Hasan, A.; Waibhaw, G.; Tiwari, S.; Dharmalingam, K.; Shukla, I.; Pandey, L.M. Fabrication and Characterization of Chitosan, Polyvinylpyrrolidone, and Cellulose Nanowhiskers Nanocomposite Films for Wound Healing Drug Delivery Application. J. Biomed. Mater. Res. Part A 2017, 105, 2391–2404. [Google Scholar] [CrossRef]
- Oliveira, A.C.S.; Ugucioni, J.C.; Borges, S.V. Effect of Glutaraldehyde/Glycerol Ratios on the Properties of Chitosan Films. J. Food Process. Preserv. 2021, 45, e15060. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; Ibarburu, I.; Dueñas, M.T.; De La Caba, K. Characterization and Antimicrobial Analysis of Chitosan-Based Films. J. Food Eng. 2013, 116, 889–899. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Yu, J.; Yang, J.; Xiong, L.; Sun, Q. Effects of Chitin Nano-Whiskers on the Antibacterial and Physicochemical Properties of Maize Starch Films. Carbohydr. Polym. 2016, 147, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kadokawa, J.; Takegawa, A.; Mine, S.; Prasad, K. Preparation of Chitin Nanowhiskers Using an Ionic Liquid and Their Composite Materials with Poly(Vinyl Alcohol). Carbohydr. Polym. 2011, 84, 1408–1412. [Google Scholar] [CrossRef]
- Liu, H.; Adhikari, R.; Guo, Q.; Adhikari, B. Preparation and Characterization of Glycerol Plasticized (High-Amylose) Starch–Chitosan Films. J. Food Eng. 2013, 116, 588–597. [Google Scholar] [CrossRef]
- Sriupayo, J.; Supaphol, P.; Blackwell, J.; Rujiravanit, R. Preparation and Characterization of α-Chitin Whisker-Reinforced Chitosan Nanocomposite Films with or without Heat Treatment. Carbohydr. Polym. 2005, 62, 130–136. [Google Scholar] [CrossRef]
- Dubashynskaya, N.V.; Petrova, V.A.; Sgibnev, A.V.; Elokhovskiy, V.Y.; Cherkasova, Y.I.; Skorik, Y.A. Carrageenan/Chitin Nanowhiskers Cryogels for Vaginal Delivery of Metronidazole. Polymers 2023, 15, 2362. [Google Scholar] [CrossRef]
- Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Tang, C.K. Processing and Analysis of Chitosan Nanocomposites Reinforced with Chitin Whiskers and Tannic Acid as a Crosslinker. Carbohydr. Polym. 2015, 115, 379–387. [Google Scholar] [CrossRef]
- Abdel-Monem, R.A.; Rabie, S.T.; El-Sayed, A.A.; Abdelhamid, A.E. Enhanced Performance of Chitosan Film Containing Vinyl Imidazole-Hydroxyethyl Methacrylate Copolymers. Egypt. J. Chem. 2024, 67, 105–116. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Morales, A.; Erdocia, X.; Iturrondobeitia, M.; Labidi, J.; Lizundia, E. Chitosan-Chitin Nanocrystal Films from Lobster and Spider Crab: Properties and Environmental Sustainability. ACS Sustain. Chem. Eng. 2024, 12, 10363–10375. [Google Scholar] [CrossRef]
- Thomas, M.S.; Koshy, R.R.; Mary, S.K.; Thomas, S.; Pothan, L.A. Starch, Chitin and Chitosan Based Composites and Nanocomposites; Springer Briefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-03157-2. [Google Scholar]
- Holbrey, J.D.; Reichert, W.M.; Swatloski, R.P.; Broker, G.A.; Pitner, W.R.; Seddon, K.R.; Rogers, R.D. Efficient, Halide Free Synthesis of New, Low Cost Ionic Liquids: 1,3-Dialkylimidazolium Salts Containing Methyl- and Ethyl-Sulfate Anions. Green Chem. 2002, 4, 407–413. [Google Scholar] [CrossRef]
Sample | CS (%) | CS-MeImB (%) | ChNws (%) | Gly (%) |
---|---|---|---|---|
F-CS | 85 | - | 0 | 15 |
F-CS-1 | 84 | - | 1 | 15 |
F-CS-5 | 80 | - | 5 | 15 |
F-CS-MeImB | 75 | 10 | 0 | 15 |
F-CS-MeImB-1 | 74 | 10 | 1 | 15 |
F-CS-MeImB-5 | 70 | 10 | 5 | 15 |
C (%) | H (%) | N (%) | C/N | DA (%) | DS (%) | |
---|---|---|---|---|---|---|
CS | 40.6 ± 0.3 | 6.7 ± 0.3 | 7.2 ± 0.3 | 5.6 | 28 | - |
CStheo | 44.3 | 6.9 | 8.0 | 5.5 | 25 | |
CS-MeImB | 39.5 ± 0.3 | 6.5 ± 0.1 | 9.4 ± 0.1 | 4.2 | 28 | 57 |
YI (%) | WVT 10−3 (g/(d × m) | E (MPa) | TS (MPa) | ε (%) | |
---|---|---|---|---|---|
F-CS | 2.73 ± 0.16 a | 81.4 ± 5.4 a | 11.2 ± 1.6 a | 28.7 ± 3.5 a | 10.3 ± 3.0 a |
F-CS-1 | 3.16 ± 0.15 a | 78.6 ± 5.5 a | 13.9 ± 2.1 a | 24.0 ± 4.9 a | 6.4 ± 1.5 ab |
F-CS-5 | 6.34 ± 0.19 b | 70.4 ± 8.7 a | 19.0 ± 2.1 b | 24.3 ± 5.7 a | 8.9 ± 3.8 ab |
F-CS-MeImB | 2.78 ± 0.15 a | 21.1 ± 0.9 b | 14.1 ± 0.8 a | 22.4 ± 5.3 a | 3.6 ± 2.1 c |
F-CS-MeImB-1 | 3.13 ± 0.16 a | 22.6 ± 1.5 b | 15.7 ± 1.0 ab | 28.0 ± 2.1 a | 2.8 ± 1.2 c |
F-CS-MeImB-5 | 5.09 ± 0.94 b | 23.5 ± 0.9 b | 19.5 ± 1.8 b | 26.8 ± 6.1 a | 1.8 ± 0.6 c |
S. aureus | S. epidermidis | P. aeruginosa | E. coli | |
---|---|---|---|---|
F-CS | 85.3 ± 1.1 a | - | - | - |
F-CS-1 | 88.5 ± 1.4 b | - | - | - |
F-CS-5 | 79.7 ± 0.9 c | - | - | - |
F-CS-MeImB | 85.5 ± 2.3 ab | 99.5 ± 2.1 a | 97.5 ± 1.7 a | 99.999 ± 0.001 a |
F-CS-MeImB-1 | 87.7 ± 2.7 ab | 99.8 ± 1.3 a | 99.1 ± 2.1 a | 99.999 ± 0.001 a |
F-CS-MeImB-5 | 92.1 ± 4.3 ab | 97.8 ± 2.6 a | 99.4 ± 1.5 a | 99.999 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Nuñez, C.; Quiroz-Pereira, Y.; Muñoz-Bonilla, A.; Fernández-García, M. Enhancing Antimicrobial and Antioxidant Properties of Chitosan-Based Films with 1-Methylimidazolium-Chitosan. Polymers 2025, 17, 2608. https://doi.org/10.3390/polym17192608
Muñoz-Nuñez C, Quiroz-Pereira Y, Muñoz-Bonilla A, Fernández-García M. Enhancing Antimicrobial and Antioxidant Properties of Chitosan-Based Films with 1-Methylimidazolium-Chitosan. Polymers. 2025; 17(19):2608. https://doi.org/10.3390/polym17192608
Chicago/Turabian StyleMuñoz-Nuñez, Carolina, Yoleida Quiroz-Pereira, Alexandra Muñoz-Bonilla, and Marta Fernández-García. 2025. "Enhancing Antimicrobial and Antioxidant Properties of Chitosan-Based Films with 1-Methylimidazolium-Chitosan" Polymers 17, no. 19: 2608. https://doi.org/10.3390/polym17192608
APA StyleMuñoz-Nuñez, C., Quiroz-Pereira, Y., Muñoz-Bonilla, A., & Fernández-García, M. (2025). Enhancing Antimicrobial and Antioxidant Properties of Chitosan-Based Films with 1-Methylimidazolium-Chitosan. Polymers, 17(19), 2608. https://doi.org/10.3390/polym17192608