Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Adhesive Groups
2.2. Validate the Variations Between Samples
2.3. Degree of Conversion Procedure
2.4. Polymerization Conversion Procedure
2.5. Vickers Microhardness Procedure
2.6. Statistical Analysis
3. Results
3.1. HNT Particle Characterization
3.2. Weight Variation Between the Specimens
3.3. Degree of Conversion Result
3.4. Polymerization Conversion Result
3.5. Vickers Microhardness Result
4. Discussion
Clinical Significance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhareky, M.; Tavares, M. Amalgam vs composite restoration, survival, and secondary caries. J. Evid. Based Dent. Pract. 2016, 16, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Simecek, J.W.; Diefenderfer, K.E.; Cohen, M.E. An evaluation of replacement rates for posterior resin-based composite and amalgam restorations in US Navy and Marine Corps recruits. J. Am. Dent. Assoc. 2009, 140, 200–209. [Google Scholar] [CrossRef]
- Mjör, I.A.; Dahl, J.E.; Moorhead, J.E. Age of restorations at replacement in permanent teeth in general dental practice. Acta Odontol. Scand. 2000, 58, 97–101. [Google Scholar] [CrossRef]
- Soncini, J.A.; Maserejian, N.N.; Trachtenberg, F.; Tavares, M.; Hayes, C. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: Findings From the New England Children’s Amalgam Trial. J. Am. Dent. Assoc. 2007, 138, 763–772. [Google Scholar] [CrossRef]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.E.; Windsor, L.J.; Smyth, T.W.; Hafez, A.A.; Cox, C.F. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit. Rev. Oral Biol. Med. 2002, 13, 509–520. [Google Scholar] [CrossRef]
- Kopperud, S.E.; Tveit, A.B.; Gaarden, T.; Sandvik, L.; Espelid, I. Longevity of posterior dental restorations and reasons for failure. Eur. J. Oral Sci. 2012, 120, 539–548. [Google Scholar] [CrossRef]
- Brantley, C.F.; Bader, J.D.; Shugars, D.A.; Nesbit, S.P. Does the cycle of rerestoration lead to larger restorations? J. Am. Dent. Assoc. 1995, 126, 1407–1413. [Google Scholar] [CrossRef]
- Hunter, A.; Treasure, E.; Hunter, A. Increases in cavity volume associated with the removal of class 2 amalgam and composite restorations. Oper. Dent. 1995, 20, 2–6. [Google Scholar]
- Carvalho, R.M.; Manso, A.P. Biodegradation of Resin-Dentin Bonds: A Clinical Problem? Curr. Oral Health Rep. 2016, 3, 229–233. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is secondary caries with composites a material-based problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef] [PubMed]
- Maske, T.; Kuper, N.; Hollanders, A.; Bronkhorst, E.; Cenci, M.; Huysmans, M. Secondary caries development and the role of a matrix metalloproteinase inhibitor: A clinical in situ study. J. Dent. 2018, 71, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, N. The hybrid layer: A resin-dentin composite. Proc. Finn. Dent. Soc. Suom. Hammaslaakariseuran Toim. 1992, 88, 321–329. [Google Scholar]
- Jain, A.; Bahuguna, R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J. Oral Biol. Craniofacial Res. 2015, 5, 212–218. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Larjava, H.; Sorsa, T.; Uitto, V.-J.; Larmas, M.; Salo, T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 1998, 77, 1622–1629. [Google Scholar] [CrossRef]
- Chaussain-Miller, C.; Fioretti, F.; Goldberg, M.; Menashi, S. The role of matrix metalloproteinases (MMPs) in human caries. J. Dent. Res. 2006, 85, 22–32. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Mazzoni, A.; Pashley, D.H.; Nishitani, Y.; Breschi, L.; Mannello, F.; Tjäderhane, L.; Toledano, M.; Pashley, E.L.; Tay, F.R. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials 2006, 27, 4470–4476. [Google Scholar] [CrossRef]
- Nishitani, Y.; Yoshiyama, M.; Wadgaonkar, B.; Breschi, L.; Mannello, F.; Mazzoni, A.; Carvalho, R.M.; Tjäderhane, L.; Tay, F.R.; Pashley, D.H. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. Eur. J. Oral Sci. 2006, 114, 160–166. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H.; Loushine, R.J.; Weller, R.N.; Monticelli, F.; Osorio, R. Self-etching adhesives increase collagenolytic activity in radicular dentin. J. Endod. 2006, 32, 862–868. [Google Scholar] [CrossRef]
- Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.; Sherriff, M.; Watson, T.; Banerjee, A. Effects of MMP inhibitors incorporated within dental adhesives. J. Dent. Res. 2012, 91, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.-W.; Chen, W.; Lung, W.Y.; Wei, X.Y.; Cheng, B.H.; Cai, Z.M.; Huang, W.R. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J. Nutr. Biochem. 2017, 41, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Takagi, S.; Ando, T.; Yoneyama, H.; Ito, K.; Mizugai, H.; Isogai, E. Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms. J. Vet. Med. Sci. 2016, 78, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Djerir, D.; Iddir, M.; Bourgault, S.; Lamy, S.; Annabi, B. Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors. Biophys. Chem. 2018, 234, 34–41. [Google Scholar] [CrossRef]
- Chowdhury, A.; Nandy, S.K.; Sarkar, J.; Chakraborti, T.; Chakraborti, S. Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies. Mol. Cell. Biochem. 2017, 427, 111–122. [Google Scholar] [CrossRef]
- Kim-Park, W.K.; Allam, E.S.; Palasuk, J.; Kowolik, M.; Park, K.K.; Windsor, L.J. Green tea catechin inhibits the activity and neutrophil release of Matrix Metalloproteinase-9. J. Tradit. Complement. Med. 2016, 6, 343–346. [Google Scholar] [CrossRef]
- Makimura, M.; Hirasawa, M.; Kobayashi, K.; Indo, J.; Sakanaka, S.; Taguchi, T.; Otake, S. Inhibitory effect of tea catechins on collagenase activity. J. Periodontol. 1993, 64, 630–636. [Google Scholar] [CrossRef]
- Madhan, B.; Krishnamoorthy, G.; Rao, J.R.; Nair, B.U. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int. J. Biol. Macromol. 2007, 41, 16–22. [Google Scholar] [CrossRef]
- Vidal, C.M.; Aguiar, T.R.; Phansalkar, R.; McAlpine, J.B.; Napolitano, J.G.; Chen, S.-N.; Araújo, L.S.; Pauli, G.F.; Bedran-Russo, A. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater. 2014, 10, 3288–3294. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Palasuk, J.; Windsor, L.J.; Platt, J.A.; Lvov, Y.; Geraldeli, S.; Bottino, M.C. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion. Clin. Oral Investig. 2018, 22, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, S.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.; Platt, J.; Windsor, L.; Bottino, M. Doxycycline-encapsulated nanotube-modified dentin adhesives. J. Dent. Res. 2014, 93, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Covalently modified halloysite clay nanotubes: Synthesis, properties, biological and medical applications. J. Mater. Chem. B 2017, 5, 2867–2882. [Google Scholar] [CrossRef]
- Veerabadran, N.G.; Price, R.R.; Lvov, Y.M. Clay nanotubes for encapsulation and sustained release of drugs. Nano 2007, 2, 115–120. [Google Scholar] [CrossRef]
- Alhijji, S.; Platt, J.A.; Alhotan, A.; Labban, N.; Bottino, M.C.; Windsor, L.J. Release and MMP-9 Inhibition Assessment of Dental Adhesive Modified with EGCG-Encapsulated Halloysite Nanotubes. Nanomaterials 2023, 13, 999. [Google Scholar] [CrossRef]
- Alhijji, S.M. EGCG-Encapsulated Halloysite Nanotube Modified-Adhesive for Longer-Lasting Dentin-Resin Interfaces. Ph.D. Dissertation, Indiana University, Indianapolis, IN, USA, 2022. [Google Scholar]
- Bottino, M.C.; Batarseh, G.; Palasuk, J.; Alkatheeri, M.S.; Windsor, L.J.; Platt, J.A. Nanotube-modified dentin adhesive—Physicochemical and dentin bonding characterizations. Dent. Mater. 2013, 29, 1158–1165. [Google Scholar] [CrossRef]
- Atomssa, T.; Gholap, A. Characterization and determination of catechins in green tea leaves using UV-visible spectrometer. J. Eng. Technol. Res. 2015, 7, 22–31. [Google Scholar]
- Rueggeberg, F.; Hashinger, D.; Fairhurst, C. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef]
- Nomoto, R. Effect of light wavelength on polymerization of light-cured resins. Dent. Mater. J. 1997, 16, 60–73, 111. [Google Scholar] [CrossRef]
- Du, X.; Huang, X.; Huang, C.; Wang, Y.; Zhang, Y. Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. J. Dent. 2012, 40, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Khamverdi, Z.; Rezaei-Soufi, L.; Rostamzadeh, T. The effect of epigallocatechin gallate on the dentin bond durability of two self-etch adhesives. J. Dent. 2015, 16, 68. [Google Scholar]
- Yu, H.-H.; Zhang, L.; Yu, F.; Li, F.; Liu, Z.-Y.; Chen, J.-H. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin. Materials 2017, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Neri, J.R.; Yamauti, M.; Feitosa, V.P.; Pires, A.P.M.; Araújo, R.D.S.; Santiago, S.L. Physicochemical properties of a methacrylate-based dental adhesive incorporated with epigallocatechin-3-gallate. Braz. Dent. J. 2014, 25, 528–531. [Google Scholar] [CrossRef]
- Ruyter, I.E.; Svendsen, S.A. Remaining methacrylate groups in composite restorative materials. Acta Odontol. Scand. 1978, 36, 75–82. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef]
ID | Group | HNT (mg/mL) | EGCG (mg/mL) |
---|---|---|---|
G1 | Control adhesive | - | - |
G2 | 7.5% HNT adhesive | 75 | - |
G3 | 7.5% EGCG–HNT adhesive | 75 | 1.6 * |
G4 | 0.16% EGCG adhesive | - | 1.6 |
G5 | 15% HNT adhesive | 150 | - |
G6 | 15% EGCG–HNT adhesive | 150 | 3.2 * |
G7 | 0.32% EGCG adhesive | - | 3.2 |
ID | Group | Weight (mg) | SD | Std. Err. | 95% C.I. Lower Bound | 95% C.I. Upper Bound |
---|---|---|---|---|---|---|
G1 | Control adhesive | 59.67 | 0.9 | 0.35 | 58.76 | 60.58 |
G2 | 7.5% HNT adhesive | 60.10 | 1.6 | 0.66 | 58.41 | 61.79 |
G3 | 7.5% EGCG–HNT adhesive | 59.90 | 1.2 | 0.48 | 58.68 | 61.12 |
G4 | 0.16% EGCG adhesive | 59.47 | 1.1 | 0.44 | 58.34 | 60.60 |
G5 | 15% HNT adhesive | 60.90 | 1.1 | 0.45 | 59.74 | 62.06 |
G6 | 15% EGCG–HNT adhesive | 60.75 | 1.4 | 0.57 | 59.29 | 62.21 |
G7 | 0.32% EGCG adhesive | 59.55 | 0.6 | 0.24 | 58.94 | 60.16 |
ID | Group | DC [%] | PC [%] | VHN |
---|---|---|---|---|
G1 | Control adhesive | 81.15 (0.62) a | 85.81 (1.24) a,b | 24.12 (0.33) a,b,c |
G2 | 7.5% HNT adhesive | 80.54 (2.71) a | 84.63 (3.50) a,b | 24.32 (0.27) a,b |
G3 | 7.5% EGCG–HNT adhesive | 80.97 (1.22) a | 86.59 (1.83) a | 23.55 (0.35) b,c,d |
G4 | 0.16% EGCG adhesive | 78.29 (1.08) a,b | 84.55 (1.85) a,b | 22.51 (0.52) d |
G5 | 15% HNT adhesive | 82.22 (1.33) a | 87.67 (1.63) a | 24.92 (0.21) a |
G6 | 15% EGCG–HNT adhesive | 79.73 (1.07) a | 85.34 (1.77) a,b | 22.90 (0.71) c,d |
G7 | 0.32% EGCG adhesive | 73.59 (6.38) b | 80.63 (6.45) b | 20.56 (1.65) e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhijji, S.; Platt, J.A.; Al-Maflehi, N.; Alhotan, A.; Haider, J.; Bottino, M.C.; Windsor, L.J. Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces. Polymers 2025, 17, 1. https://doi.org/10.3390/polym17010001
Alhijji S, Platt JA, Al-Maflehi N, Alhotan A, Haider J, Bottino MC, Windsor LJ. Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces. Polymers. 2025; 17(1):1. https://doi.org/10.3390/polym17010001
Chicago/Turabian StyleAlhijji, Saleh, Jeffrey A. Platt, Nassr Al-Maflehi, Abdulaziz Alhotan, Julfikar Haider, Marco C. Bottino, and L. Jack Windsor. 2025. "Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces" Polymers 17, no. 1: 1. https://doi.org/10.3390/polym17010001
APA StyleAlhijji, S., Platt, J. A., Al-Maflehi, N., Alhotan, A., Haider, J., Bottino, M. C., & Windsor, L. J. (2025). Characterizing Curing Efficiency of EGCG-Encapsulated Halloysite Nanotube Modified Adhesives for Durable Dentin–Resin Interfaces. Polymers, 17(1), 1. https://doi.org/10.3390/polym17010001