Modeling of Polymer Composites and Nanocomposites
1. Introduction
2. Overview of Papers Published in the Special Issue
3. Conclusions
- The introduction of suitable nanoparticles or dopants into polymer composites leads to improved piezoelectric properties and increased electrical conductivity efficiency, but also, for example, to effectively increase protection against gamma radiation at low energies.
- The application of carbon fiber-reinforced polymer concrete offers hope for the possibility of designing ductile frames with enhanced energy dissipation, suitable for use in non-corrosive seismic-resistant buildings.
- Adding carbon and glass fibers to polymer matrices used in 3D printing can improve their properties such as strength, stiffness and impact resistance.
- Thermoplastic polymer blends are gaining attention for their increased recyclability and sustainability, as well as their ability to improve thermal stability or even flame retardancy and broad manufacturing capabilities.
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
AuNPs | Gold nanoparticles |
FDM | Fused Deposition Modeling |
FRCs | Fiber-reinforced composites |
PCs | Polymer composites |
PETG | Polyethylene Terephthalate Glycol |
PLA | Polylactic Acid |
PNs | Polymer nanocomposites |
List of Contributions
- Umer, U.; Abidi, M.H.; Mian, S.H.; Alasim, F.; Aboudaif, M.K. Effects of silica nanoparticles on the piezoelectro-elastic response of PZT-7A–polyimide nanocomposites: Micromechanics modeling technique. Polymers 2024, 16, 2860. https://doi.org/10.3390/polym16202860.
- Umer, U.; Abidi, M.H.; Almutairi, Z.; Aboudaif, M.K. A multi-phase analytical model for effective electrical conductivity of polymer matrix composites containing micro-SiC whiskers and nano-carbon black hybrids. Polymers 2025, 17, 128. https://doi.org/10.3390/polym17020128.
- Maidi, M.; Sherzer, G.L.; Gal, E. Multiscale numerical study of enhanced ductility ratios and capacity in carbon fiber-reinforced polymer concrete beams for safety design. Polymers 2025, 17, 234. https://doi.org/10.3390/polym17020234.
- Marashdeh, M.; Madkhali, N. Enhancing radiation shielding efficiency of Nigella sativa eumelanin polymer through heavy metals doping. Polymers 2025, 17, 609. https://doi.org/10.3390/polym17050609.
- Jarka, P.; Hajduk, B.; Kumari, P.; Janeczek, H.; Godzierz, M.; Tsekpo, Y.M.; Tański, T. Investigations on thermal transitions in PDPP4T/PCPDTBT/AuNPs composite films using variable temperature ellipsometry. Polymers 2025, 17, 704. https://doi.org/10.3390/polym17050704.
- Williams, M.J.; Gray, M.C. Microcanonical analysis of semiflexible homopolymers with variable-width bending potential. Polymers 2025, 17, 906. https://doi.org/10.3390/polym17070906.
- Nemes, V.; Szalai, S.; Szívós, B.F.; Sysyn, M.; Kurhan, D.; Fischer, S. Deformation characterization of glass fiber and carbon fiber-reinforced 3D printing filaments using digital image correlation. Polymers 2025, 17, 934. https://doi.org/10.3390/polym17070934.
- Hao, P.; Tang, N.; Tiscar, J.M.; Gilabert, F.A. Untapped potential of recycled thermoplastic blends in UD composites via finite element analysis. Polymers 2025, 17, 1168. https://doi.org/10.3390/polym17091168.
- Kuang, N.; Qi, H.; Zhao, W.; Wu, J. Influence of resin composition on photopolymerization of zirconia ceramics fabricated by digital light processing additive manufacturing. Polymers 2025, 17, 1354. https://doi.org/10.3390/polym17101354.
- Rachtanapun, P.; Suhr, J.; Oh, E.; Thajai, N.; Kanthiya, T.; Kiattipornpithak, K.; Kaewapai, K.; Photphroet, S.; Worajittiphon, P.; Tanadchangsaeng, N.; Wattanachai, P.; Jantanasakulwong, K.; Sawangrat, C. Flame retardance and antistatic polybutylene succinate/polybutylene adipate-co-terephthalate/magnesium composite. Polymers 2025, 17, 1675. https://doi.org/10.3390/polym17121675.
References
- Gopinath, K.P.; Rajagopal, M.; Krishnan, A.; Sreerama, S.K. A review on recent trends in nanomaterials and nanocomposites for environmental applications. Curr. Anal. Chem. 2021, 17, 202–243. [Google Scholar] [CrossRef]
- Toboła, W.; Papis, M.; Jastrzębski, D.; Perz, R. Experimental research of energy absorbing structures within helmet samples made with the additive manufacturing method—Preliminary study. Acta Bioeng. Biomech. 2023, 25, 127–136. [Google Scholar] [CrossRef]
- Balakrishnan, T.S.; Sultan, M.T.H.; Shahar, F.S.; Basri, A.A.; Shah, A.U.M.; Sebaey, T.A.; Łukaszewicz, A.; Józwik, J.; Grzejda, R. Fatigue and impact properties of kenaf/glass-reinforced hybrid pultruded composites for structural applications. Materials 2024, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Puchała, K.; Moneta, G.; Lichoń, D.; Grzejda, R.; Bednarz, A.; Mielniczek, W.; Łopatka, M.; Szymczyk, E.; Ignatovych, S.; Mykhailyshyn, R. Aerial medical platform for soldiers and civils evacuation—Concept, implementation plan and assessment of adaptation possibility of existing technologies. Adv. Sci. Technol. Res. J. 2025, 19, 28–50. [Google Scholar] [CrossRef]
- Nowakowski, M.; Kosiuczenko, K.; Viliš, J. Unmanned vehicle mobility improvement against ballistic threats during special missions: A simulation study. Transp. Probl. 2025, 20, 139–151. [Google Scholar] [CrossRef]
- Wysmulski, P.; Teter, A.; Debski, H. Effect of load eccentricity on the buckling of thin-walled laminated C-columns. AIP Conf. Proc. 2018, 1922, 080008. [Google Scholar]
- Wysmulski, P.; Debski, H. The analysis of sensitivity to eccentric load of compressed thin-walled laminate columns. AIP Conf. Proc. 2019, 2078, 020006. [Google Scholar] [CrossRef]
- Madkhali, N.; Algessair, S. Exploring the optical properties of metal-modified melanin following ultraviolet irradiation: An experimental and theoretical study using density functional theory. Heliyon 2024, 10, e29287. [Google Scholar] [CrossRef]
- Magibalan, S.; Naveen, N.; Pradeep, N.; Vijayakumar, G.; Nithish Kumar, R. Experimental Investigations on Mechanical Properties of Sisal and Coir Fiber Reinforced Hybrid Bio Composites. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Sultan, M.T.H.; Łukaszewicz, A.; Shah, A.U.M.; Shahar, F.S.; Józwik, J.; Najeeb, M.I.; Grzejda, R. Characterization and isolation method of Gigantochloa scortechinii (Buluh Semantan) cellulose nanocrystals. Int. J. Biol. Macromol. 2024, 272, 132847. [Google Scholar] [CrossRef]
- Huang, Y.; Sultan, M.T.H.; Shahar, F.S.; Grzejda, R.; Łukaszewicz, A. Hybrid fiber-reinforced biocomposites for marine applications: A review. J. Compos. Sci. 2024, 8, 430. [Google Scholar] [CrossRef]
- Bakhori, S.N.M.; Hassan, M.Z.; Bakhori, N.M.; Jamaludin, K.R.; Ramlie, F.; Daud, M.Y.M.; Aziz, S.A. Physical, mechanical and perforation resistance of natural-synthetic fiber interply laminate hybrid composites. Polymers 2022, 14, 1322. [Google Scholar] [CrossRef]
- Shahar, F.S.; Sultan, M.T.H.; Grzejda, R.; Łukaszewicz, A.; Oksiuta, Z.; Krishnamoorthy, R.R. Harnessing the potential of natural composites in biomedical 3D printing. Materials 2024, 17, 6045. [Google Scholar] [CrossRef]
- Huang, Y.; Sultan, M.T.H.; Shahar, F.S.; Łukaszewicz, A.; Oksiuta, Z.; Grzejda, R. Kenaf fiber-reinforced biocomposites for marine applications: A review. Materials 2025, 18, 999. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Sengupta, R.; Bhowmick, A.K. Modifications of carbon for polymer composites and nanocomposites. Prog. Polym. Sci. 2012, 37, 781–819. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Azlin, M.N.M.; Ilyas, R.A.; Zuhri, M.Y.M.; Sapuan, S.M.; Harussani, M.M.; Sharma, S.; Nordin, A.H.; Nurazzi, N.M.; Afiqah, A.N. 3D printing and shaping polymers, composites, and nanocomposites: A review. Polymers 2022, 14, 180. [Google Scholar] [CrossRef]
- Gumowska, A.; Robles, E.; Bikoro, A.; Wronka, A.; Kowaluk, G. Selected properties of bio-based layered hybrid composites with biopolymer blends for structural applications. Polymers 2022, 14, 4393. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Walkowiak, K.; Barczewski, M. Biobased polymer nanocomposites prepared by in situ polymerization: Comparison between carbon and mineral nanofillers. J. Mater. Sci. 2024, 59, 13805–13823. [Google Scholar] [CrossRef]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- de Campos, A.; Corrêa, A.C.; Claro, I.C.; de Morais Teixeira, E.; Marconcini, J.M. Processing, characterization and application of micro and nanocellulose based environmentally friendly polymer composites. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, Thomas, S., Mishra, R.K., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–35. [Google Scholar]
- Agwuncha, S.C.; Anusionwu, C.G.; Owonubi, S.J.; Sadiku, E.R.; Busuguma, W.A.; Ibrahim, I.D. Extraction of cellulose nanofibers and their eco/friendly polymer composites. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, Thomas, S., Mishra, R.K., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 37–64. [Google Scholar]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Pypeć, K.; Irska, I.; Piesowicz, E. Functional polymer hybrid nanocomposites based on polyolefins: A review. Processes 2020, 8, 1475. [Google Scholar] [CrossRef]
- Georgios, K.; Silva, A.; Furtado, S. Applications of Green Composite Materials. In Biodegradable Green Composites; Kalia, S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 312–337. [Google Scholar]
- Bhong, M.; Khan, T.K.H.; Devade, K.; Krishna, B.V.; Sura, S.; Eftikhaar, H.K.; Thethi, H.P.; Gupta, N. Review of Composite Materials and Applications. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Diakun, J. Recycling Product Model and its application for quantitative assessment of product recycling properties. Sustainability 2024, 16, 2880. [Google Scholar] [CrossRef]
- Diakun, J.; Grzejda, R. Product design analysis with regard to recycling and selected mechanical properties. Appl. Sci. 2025, 15, 512. [Google Scholar] [CrossRef]
- Keramati, Y.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Umer, U. Micromechanical simulation of thermal expansion, elastic stiffness and piezoelectric constants of graphene/unidirectional BaTiO3 fiber reinforced epoxy hybrid nanocomposites. Acta Mech. 2023, 234, 6251–6270. [Google Scholar] [CrossRef]
- Abidi, M.H.; Al-Ahmari, A.M.; Umer, U.; Rasheed, M.S. Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement 2018, 125, 336–349. [Google Scholar] [CrossRef]
- Maidi, M.; Shufrin, I. Evaluation of existing reinforced concrete buildings for seismic retrofit through external stiffening: Limit displacement method. Buildings 2024, 14, 2781. [Google Scholar] [CrossRef]
- Maidi, M.; Sherzer, G.L.; Gal, E. Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation. Comput. Concr. 2024, 33, 385–398. [Google Scholar]
- Marashdeh, M.; Al-Hamarneh, I.F. Evaluation of gamma radiation properties of four types of surgical stainless steel in the energy range of 17.50–25.29 keV. Materials 2021, 14, 6873. [Google Scholar] [CrossRef]
- Akhdar, H.; Mahmoud, K.A.; Madkhali, N.; Marashdeh, M.; Abu El-Soad, A.M.; Tharwat, M. Engineering multifunctional polypropylene nanocomposites: Tailoring structural, thermal, and gamma-ray shielding properties with Ni0.9Zn0.1Fe2O4 doping. Prog. Nucl. Energy 2024, 177, 105478. [Google Scholar] [CrossRef]
- Hajduk, B.; Jarka, P.; Tański, T.; Bednarski, H.; Janeczek, H.; Gnida, P.; Fijalkowski, M. An investigation of the thermal transitions and physical properties of semiconducting PDPP4T:PDBPyBT blend films. Materials 2022, 15, 8392. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, B.; Bednarski, H.; Trzebicka, B. Temperature-dependent spectroscopic ellipsometry of thin polymer films. J. Phys. Chem. B 2020, 124, 3229–3251. [Google Scholar] [CrossRef]
- Hajduk, B.; Bednarski, H.; Jarząbek, B.; Nitschke, P.; Janeczek, H. Phase diagram of P3HT:PC70BM thin films based on variable-temperature spectroscopic ellipsometry. Polym. Test. 2020, 84, 106383. [Google Scholar] [CrossRef]
- Qi, K.; Liewehr, B.; Koci, T.; Pattanasiri, B.; Williams, M.J.; Bachmann, M. Influence of bonded interactions on structural phases of flexible polymers. J. Chem. Phys. 2019, 150, 054904. [Google Scholar] [CrossRef]
- Williams, M.J.; Bachmann, M. System-size dependence of helix-bundle formation for generic semiflexible polymers. Polymers 2016, 8, 245. [Google Scholar] [CrossRef]
- Joshua, R.J.N.; Raj, S.A.; Sultan, M.T.H.; Łukaszewicz, A.; Józwik, J.; Oksiuta, Z.; Dziedzic, K.; Tofil, A.; Shahar, F.S. Powder bed fusion 3D printing in precision manufacturing for biomedical applications: A comprehensive review. Materials 2024, 17, 769. [Google Scholar] [CrossRef]
- Szalai, S.; Herold, B.; Kurhan, D.; Németh, A.; Sysyn, M.; Fischer, S. Optimization of 3D printed rapid prototype deep drawing tools for automotive and railway sheet material testing. Infrastructures 2023, 8, 43. [Google Scholar] [CrossRef]
- Szalai, S.; Szívós, B.F.; Nemes, V.; Fischer, S. Sustainable 3D-printing filaments and their applications. Chem. Eng. Trans. 2024, 114, 967–972. [Google Scholar]
- Gilabert, F.A. An efficient anisotropization technique to transform isotropic nonlinear materials into unidirectional and bidirectional composites. Mater. Des. 2021, 206, 109772. [Google Scholar] [CrossRef]
- Laheri, V.; Hao, P.; Gilabert, F.A. Direct embedment of RVE-based microscale into lab size coupons to research fracture process in unidirectional and bidirectional composites. Compos. Sci. Technol. 2023, 235, 109949. [Google Scholar] [CrossRef]
- Kuang, N.; Xiao, M.; Qi, H.; Zhao, W.; Wu, J. Optimization of resin composition for zirconia ceramic digital light processing additive manufacturing. Polymers 2025, 17, 797. [Google Scholar] [CrossRef] [PubMed]
- Sawangrat, C. Anti-Static and Anti-Flaming Improvement of Biodegradable Polymer Blends by Nanocoating via Plasma Technology and Sparking Process; Technical Report; Chiang Mai University: Chiang Mai, Thailand, 2024. [Google Scholar]
- Jantanasakulwong, K.; Thanakkasaranee, S.; Seesuriyachan, P.; Singjai, P.; Saenjaiban, A.; Photphroet, S.; Pratinthong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Chaiyaso, T.; et al. Sparking nano-metals on a surface of polyethylene terephthalate and its application: Anti-coronavirus and anti-fogging properties. Int. J. Mol. Sci. 2022, 23, 10541. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzejda, R. Modeling of Polymer Composites and Nanocomposites. Polymers 2025, 17, 1944. https://doi.org/10.3390/polym17141944
Grzejda R. Modeling of Polymer Composites and Nanocomposites. Polymers. 2025; 17(14):1944. https://doi.org/10.3390/polym17141944
Chicago/Turabian StyleGrzejda, Rafał. 2025. "Modeling of Polymer Composites and Nanocomposites" Polymers 17, no. 14: 1944. https://doi.org/10.3390/polym17141944
APA StyleGrzejda, R. (2025). Modeling of Polymer Composites and Nanocomposites. Polymers, 17(14), 1944. https://doi.org/10.3390/polym17141944