Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PDMAPMA Homopolymer
2.3. Synthesis of P(DMAPMA-co-MMA35) Copolymers
2.4. Synthesis of Alkylated Copolymer P(DMAPMA-co-MMA35) with 8.1% Dodecyl Bromide
2.5. Characterization of Copolymers
2.6. Thermo-Responsive Properties
2.7. pH Adjustment
2.8. CO2 Sensitivity
2.9. Determination of Critical Aggregation Concentration (CAC)
2.10. Measurement of Total Organic Carbon (TOC) and Total Nitrogen (TN)
2.11. Antimicrobial Properties
2.11.1. Bacterial Culture Preparation
2.11.2. Bacteria Cell Reduction
3. Results and Discussion
3.1. Synthesis and Characterization of Polymers
3.2. pH- and Ionic Strength-Controlled Thermo-Responsiveness
3.3. Self-Assembly of Polymers in Aqueous Solution
3.4. Study of CO2-Sensitivity
3.5. Alkylation and Antimicrobial Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, A.S. “intelligent” polymers in medicine and biotechnology. Artif. Organs 1995, 19, 458–467. [Google Scholar]
- Galaev, I.Y.; Mattiasson, B. ‘Smart’ polymers and what they could do in biotechnology and medicine pH-Responsive polymers: Synthesis, properties and applications. Trends Biotechnol. 1999, 17, 335–340. [Google Scholar] [PubMed]
- Pasparakis, G.; Tsitsilianis, C. LCST polymers: Thermoresponsive nanostructured assemblies towards bioapplications. Polymer 2020, 211, 123146. [Google Scholar]
- Png, Z.M.; Wang, C.-G.; Yeo, J.C.C.; Lee, J.J.C.; Surat’Man, N.E.B.; Tan, Y.L.; Liu, H.; Wang, P.; Tan, B.H.; Xu, J.W.; et al. Stimuli-responsive structure–property switchable polymer materials. Mol. Syst. Des. Eng. 2023, 8, 1097–1129. [Google Scholar]
- Fattah-alhosseini, A.; Chaharmahali, R.; Alizad, S.; Kaseem, M.; Dikici, B. A review of smart polymeric materials: Recent developments and prospects for medicine applications. Hybrid Adv. 2024, 5, 100178. [Google Scholar]
- Balcerak-Woźniak, A.; Dzwonkowska-Zarzycka, M.; Kabatc-Borcz, J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials—Recent Advances and Future Perspectives. Materials 2024, 17, 4255. [Google Scholar] [PubMed]
- Bawa, P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001. [Google Scholar]
- Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C.G.; Meier, W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012, 7, 9. [Google Scholar]
- Hoffman, A.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. [Google Scholar]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar]
- Hu, L.; Wan, Y.; Zhang, Q.; Serpe, M.J. Harnessing the power of stimuli-responsive polymers for actuation. Adv. Funct. Mater. 2020, 30, 1903471. [Google Scholar]
- Guragain, S.; Bastakoti, P.B.; Malgras, V.; Nakashima, K.; Yamauchi, Y. Multi-Stimuli-Responsive Polymeric Materials. Chem.-Eur. J. 2015, 21, 13164–13174. [Google Scholar]
- Cao, Z.-Q.; Wang, G.-J. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. Chem. Rec. 2016, 16, 1398–1435. [Google Scholar] [PubMed]
- Wang, S.; Urban, M.W. Redefining polymer science via multi-stimulus responsiveness. Chem 2023, 9, 1362–1377. [Google Scholar]
- Kumar, N.; Singh, S.; Sharma, P.; Kumar, B.; Kumar, A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024, 10, 61. [Google Scholar]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar]
- Halperin, A.; Kröger, M.; Winnik, F.M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 2015, 54, 15342–15367. [Google Scholar]
- Heskins, M.; Guillet, J.E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Part A Chem. 1968, 2, 1441–1455. [Google Scholar]
- Lutz, J.-F.; Hoth, A. Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules 2006, 39, 893–896. [Google Scholar]
- Vancoillie, G.; Frank, D.; Hoogenboom, R. Thermoresponsive poly(oligo ethylene glycol acrylates). Prog. Polym. Sci. 2014, 39, 1074–1095. [Google Scholar]
- Hu, N.; Mi, L.; Metwalli, E.; Bießmann, L.; Herold, C.; Cubitt, R.; Zhong, Q.; Müller-Buschbaum, P. Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate) Thin Films Probed by In Situ Neutron Reflectivity. Langmuir 2022, 38, 8094–8103. [Google Scholar] [PubMed]
- Yuan, Y.; Raheja, K.; Milbrandt, N.B.; Beilharz, S.; Tene, S.; Oshabaheebwa, S.; Gurkan, U.A.; Samia, A.C.S.; Karayilan, M. Thermoresponsive polymers with LCST transition: Synthesis, characterization, and their impact on biomedical frontiers. RSC Appl. Polym. 2023, 1, 158–189. [Google Scholar]
- Bondaz, L.; Cousin, F.; Muller, F.; Pantoustier, N.; Perrin, P.; Luchini, A.; Goldmann, M.; Fontaine, P. pH-sensitive behavior of the PS-b-PDMAEMA copolymer at the air—Water interface. Polymer 2021, 221, 123619. [Google Scholar]
- Dong, Z.; Wei, H.; Mao, J.; Wang, D.; Yang, M.; Bo, S.; Ji, X. Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. Polymer 2012, 53, 2074–2084. [Google Scholar]
- Jiang, X.; Feng, C.; Lu, G.; Huang Jiang, X. Synthesis of temperature and pH/CO2 responsive homopolymer bearing oligo (ethylene glycol) unit and N,N-diethylamino ethyl group and its solution property. Polymer 2015, 64, 268–276. [Google Scholar]
- Mabire, A.B.; Brouard, Q.; Pitto-Barry, A.; Williams, R.J.; Willcock, H.; Kirby, N.; Chapman, E.; O’Reilly, R.K. CO2/pH-responsive particles with built-in fluorescence read-out. Polym. Chem. 2016, 7, 5943–5948. [Google Scholar]
- Shieh, Y.-T.; Lin, Y.-T.; Cheng, C.-C. CO2-switchable behavior of chitosan-g-poly[(2-dimethylamino)ethyl methacrylate] as an emulsifier. Carbohydr. Polym. 2017, 170, 281–288. [Google Scholar] [PubMed]
- Tzoumani, I.; Druvari, D.; Evangelidis, M.; Vlamis-Gardikas, A.; Bokias, G.; Kallitsis, J.K. Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules 2024, 29, 2372. [Google Scholar]
- Koufakis, E.; Manouras, T.; Anastasiadis, S.H.; Vamvakaki, M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. Langmuir 2020, 36, 3482–3493. [Google Scholar]
- Kanth, S.; Puttaiahgowda, Y.M.; Nagaraja, A.; Bukva, M. Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur. Polym. J. 2022, 163, 110930. [Google Scholar]
- Darabi, A.; Glasing, J.; Jessop, P.G.; Cunningham, M.F. Preparation of CO2-Switchable Latexes Using N-[3-(Dimethylamino)Propyl]-Methacrylamide (DMAPMAm). J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1059–1066. [Google Scholar]
- Song, Z.; Wang, K.; Gao, C.; Wang, S.; Zhang, W. A New Thermo-, pH-, and CO2-Responsive Homopolymer of Poly[N-[2-(diethylamino)ethyl]acrylamide]: Is the Diethylamino Group Underestimated? Macromolecules 2016, 49, 162–171. [Google Scholar]
- Yin, F.; Lonetti, B.; Marty, J.-D.; Lauth-de Viguerie, N. CO2-switchable thermoresponsiveness of poly(N,N-(diethylamino)ethyl acrylamide)-based homo- and copolymers in water. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131930. [Google Scholar]
- Jiang, Y.; Shan, S.F.; Liu, W.; Zhu, J.; He, Q.X.; Tan, P.; Cheng, L.; Liu, X.-Q.; Sun, L.-B. Rational design of thermo-responsive adsorbents: Demand-oriented active sites for the adsorption of dyes. Chem. Commun. 2017, 53, 9538–9541. [Google Scholar]
- Ulker, Z.; Bozbay, R.; Duygu Buyuk, S.; Orakdogen, N. Eco-friendly property modulation of biobased gels of carboxymethyl cellulose-integrated poly(tertiary amine)s for the removal of azo-food dyes. Int. J. Biol. Macromol. 2024, 282, 137199. [Google Scholar]
- Jansen-van Vuuren, R.D.; Drechsler Vilela, G.; Ramezani, M.; Gilbert, P.H.; Watson, D.; Mullins, N.; Lucas, A.K.; Giacomin, A.J.; Cunningham, M.F.; Jessop, P.G. CO2-Responsive Superabsorbent Hydrogels Capable of >90% Dewatering When Immersed in Water. ACS Appl. Polym. Mater. 2021, 3, 2153–2165. [Google Scholar]
- Bokias, G.; Hourdet, D.; Iliopoulos, I. Positively Charged Amphiphilic Polymers Based on Poly(N-isopropylacrylamide): Phase Behavior and Shear-Induced Thickening in Aqueous Solution. Macromolecules 2000, 33, 2929–2935. [Google Scholar]
- Liu, X.; He, X.; Yang, B.; Lai, L.; Chen, N.; Hu, J.; Lu, Q. Dual physically cross-linked hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation. Adv. Funct. Mater. 2021, 31, 2008187. [Google Scholar]
- Chen, H.; Sun, J.; Fan, K.; Zou, S.; Lin, Z.; Chen, J.; Zhang, Z.; Wang, K.; Jiang, Z.; Yan, K. Difunctional Polymerizable Additive Enables Efficient and Stable Wide-Bandgap Perovskites for Perovskite/Organic Tandems Solar Cells. Adv. Funct. Mater. 2025, 2502422. [Google Scholar]
- Gao, G.; Wang, L.; Cong, Y.; Wang, Z.; Zhou, Y.; Wang, R.; Chen, J.; Fu, J. Synergistic pH and Temperature-Driven Actuation of Poly(NIPAM-co-DMAPMA) / Clay Nanocomposite Hydrogel Bilayers. ACS Omega 2018, 3, 17914–17921. [Google Scholar]
- Zhang, Z.; Zhang, S.; Zhao, T.; Zhang, H. An injectable sequential dual-crosslinking catechol-functionalized hyaluronic acid hydrogel for enhanced regeneration of full-thickness burn injury. J. Control. Release 2024, 369, 545–555. [Google Scholar] [PubMed]
- Kocal, G.; Oktay, B.; Eroğlu, G.Ö.; Kuruca, S.E.; Cubuk, S.; Apohan, N.K. Stimuli-responsive smart nanoparticles with well-defined random and triblock terpolymers for controlled release of an anticancer drug. Mater. Today Commun. 2021, 26, 101974. [Google Scholar]
- An, H.; Yang, Y.; Bo, Y.; Ma, X.; Wang, Y.; Liu, L.; Wang, H.; He, Y.; Qin, J. Fabrication of self-healing hydrogel from quaternized N-[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. J. Biomed. Mater. Res. 2021, 109, 42–53. [Google Scholar]
- Singhsa, P.; Diaz-Dussan, D.; Manuspiya, H.; Narain, R. Well-Defined Cationic N-[3-(Dimethylamino)propyl]methacrylamide Hydrochloride-Based (Co)polymers for siRNA Delivery. Biomacromolecules 2018, 19, 209–221. [Google Scholar]
- Shahrbabaki, Z.; Oveissi, F.; Farajikhah, S.; Ghasemian, M.B.; Vuuren, R.D.J.-V.; Jessop, P.G.; Yun, J.; Dehghani, F.; Naficy, S. Electrical Response of Poly(N-[3-(dimethylamino)Propyl] Methacrylamide) to CO2 at a Long Exposure Period. ACS Omega 2022, 7, 22232–22243. [Google Scholar]
- Tian, H.; Quan, H.; Huang, Z.; Jiang, S. pH-switchable and CO2-switchable viscoelastic fluids based on a pseudohydrophobically associating water-soluble polymer. Fuel 2018, 227, 42–47. [Google Scholar]
- Wu, H.; Lou, Y.; Zhai, X.; Li, Z.; Liu, B. Development and Characterization of CO2−Responsive Intelligent Polymer Sealant. ACS Omega 2023, 8, 35066–35076. [Google Scholar] [PubMed]
- Wang, X.-Q.; Gao, K.-L.; Tan, P.; Gu, C.; Liu, X.-Q.; Sun, L.-B. Amine-incorporated adsorbents with reversible sites and high amine efficiency for CO2 capture in wet environment. Sep. Purif. Technol. 2022, 293, 121111. [Google Scholar]
- Hoshino, Y.; Imamura, K.; Yue, M.; Inoue, G.; Miura, Y. Reversible Absorption of CO2 Triggered by Phase Transition of Amine-Containing Micro- and Nanogel Particles. J. Am. Chem. Soc. 2012, 134, 18177–18180. [Google Scholar]
- Gao, J.; Song, X.; Yan, J.; Yuan, J.; Cao, L.; Deng, G.; Wang, Z. Photoinduced phase transitions in nanogel particles for reversible CO2 capture. Chem. Eng. J. 2023, 455, 140621. [Google Scholar]
- Zhang, H.; Tan, P.; Wang, X.-Q.; Gao, K.-L.; Sun, L.-B. Fabrication of Thermoresponsive Adsorbents with High Amine Efficiency for Wet CO2 Capture: Coupling Responsiveness with Adsorption Swing. ACS Sustain. Chem. Eng. 2025, 13, 1349–1355. [Google Scholar]
- Shahrbabaki, Z.; Farajikhah, S.; Ghasemian, M.B.; Oveissi, F.; Rath, R.J.; Yun, J.; Dehghani, F.; Naficy, S. A Flexible and Polymer-Based Chemiresistive CO2 Gas Sensor at Room Temperature. Adv. Mater. Technol. 2023, 8, 2201510. [Google Scholar]
- Rath, R.J.; Naficy, S.; Giaretta, J.; Oveissi, F.; Yun, J.; Dehghani, F.; Farajikhah, S. Chemiresistive Sensor for Enhanced CO2 Gas Monitoring. ACS Sens. 2024, 9, 1735–1742. [Google Scholar]
- Heo, N.Y.; Park, S.G.; Kim, D.; Lee, H.; Lee, W. Real-time monitoring of CO2 gas using inverse opal photonic gel containing Poly(2-(dimethylamino)ethylmethacrylate. Sens. Actuators B Chem. 2023, 377, 133041. [Google Scholar]
- Paslay, L.C.; Abel, B.A.; Brown, T.D.; Koul, V.; Choudhary, V.; McCormick, C.L.; Morgan, S.E. Antimicrobial Poly(methacrylamide) Derivatives Prepared via Aqueous RAFT Polymerization Exhibit Biocidal Efficiency Dependent upon Cation Structure. Biomacromolecules 2012, 13, 2472–2482. [Google Scholar] [PubMed]
- Pıhtılı, G.; Erecevit Sönmez, P.; Biryan, F.; Torğut, G. Synthesis, characterization, and evaluation of antimicrobial performance of N-[3-(dimethylamino)propyl]methacrylamide based copolymer on pathogens. Polym. Eng. Sci. 2022, 62, 3099–3109. [Google Scholar]
- Chiu, C.-Y.; Lin, H.-T.; Yen, T.-J.; Chang, Y. Self-Assembly Anchored Cationic Copolymer Interfaces for Applying the Control of Counterion-Induced Bacteria Killing/Release Procedure. Macromol. Biosci. 2022, 22, 2200207. [Google Scholar]
- Schmitz, S.; Ritter, H. Access to Poly{N-[3-(dimethylamino)propyl](meth)acrylamide} via Microwave-Assisted Synthesis and Control of LCST-Behavior in Water. Macromol. Rapid Commun. 2007, 28, 2080–2083. [Google Scholar]
- Jiang, Z.; Blakey, I.; Whittaker, A.K. Aqueous solution behaviour of novel water-soluble amphiphilic copolymers with elevated hydrophobic unit content. Polym. Chem. 2017, 8, 4114–4123. [Google Scholar]
- Christopoulou, A.; Kazamiakis, C.; Iatridi, Z.; Bokias, G. Controlled Amphiphilicity and Thermo-Responsiveness of Functional Copolymers Based on Oligo(Ethylene Glycol) Methyl Ether Methacrylates. Polymers 2024, 16, 1456. [Google Scholar]
- Vardaxi, A.; Pispas, S. Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives. Polymers 2023, 15, 1519. [Google Scholar] [PubMed]
- Druvari, D.; Antonopoulou, A.; Lainioti, G.C.; Vlamis-Gardikas, A.; Bokias, G.; Kallitsis, J.K. Preparation of Antimicrobial Coatings from Cross-Linked Copolymers Containing Quaternary Dodecyl-Ammonium Compounds. Int. J. Mol. Sci. 2021, 22, 13236. [Google Scholar]
- van de Wetering, P.; Moret, E.E.; Schuurmans-Nieuwenbroek, N.M.E.; van Steenbergen, M.J.; Hennik, W.E. Structure− activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem. 1999, 10, 589–597. [Google Scholar]
- Kurniasih, I.N.; Liang, H.; Mohr, P.C.; Khot, G.; Rabe, J.P.; Mohr, A. Nile Red Dye in Aqueous Surfactant and Micellar Solution. Langmuir 2015, 31, 2639–2648. [Google Scholar]
- Ozair, G. An Overview of Calcium Carbonate Saturation Indices as a Criterion to Protect Desalinated Water Transmission Lines From Deterioration. Nat. Environ. Pollut. Technol. 2012, 11, 203–212. [Google Scholar]
- Chakraborty, S.; Liu, R.; Lemke, J.J.; Hayouka, Z.; Welch, R.A.; Weisblum, B.; Masters, K.S.; Gellman, S.H. Effects of Cyclic vs Acyclic Hydrophobic Subunits on the Chemical Structure and Biological Properties of Nylon-3 Copolymers. ACS Macro Lett. 2013, 2, 753–756. [Google Scholar]
- Hibbard, J.P.; Yam, J.G.; Alsalek, E.B.; Bahamonde, A. Mild Sustainable Amide Alkylation Protocol Enables a Broad Orthogonal Scope. J. Org. Chem. 2022, 87, 12036–12040. [Google Scholar] [PubMed]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic Resistance in Pseudomonas Aeruginosa−Mechanisms, Epidemiology and Evolution. Drug Resist. Updates 2019, 44, 100640. [Google Scholar]
- Mishra, R.K.; Ray, A.R. Synthesis and Characterization of Poly{N-[3-(dimethylamino) propyl] methacrylamide-co-itaconic acid} Hydrogels for Drug Delivery. J. Appl. Polym. Sci. 2011, 119, 3199–3206. [Google Scholar]
Polymer | Feed Composition (% mol DMAPMA) | Feed Composition (% mol ΜΜA) | 1H-NMR Results (% mol MMA) |
---|---|---|---|
PDMAPMA | 100 | 0 | 0 |
P(DMAPMA-co-MMA20) | 85 | 15 | 20 |
P(DMAPMA-co-MMA35) | 70 | 30 | 35 |
A/A | Conductivity (μS/cm−1) | pH | TOC (mg/L) | TC (mg/L) | IC (mg/L) | TN (mg/L) | Molar IC/TN Ratio |
---|---|---|---|---|---|---|---|
1st | 29 | 9.31 | 400.9 | 402.2 | 1.222 | 77.32 | 0.018 |
2nd (CO2) | 166.4 | 7.62 | 411.6 | 428.4 | 16.84 | 81.56 | 0.24 |
3rd (CO2 + Ar) | 96.6 | 8.02 | 395.7 | 405.6 | 9.913 | 75.60 | 0.15 |
Polymer | Feed (% Moles in MMA) | 1H NMR (% Moles in MMA) | Solubility in Water |
---|---|---|---|
P(DMAPMA-co-DMAPMA-C348) | 52.0 | 48.0 | ✓ |
P(DMAPMA-co-DMAPMA-C1216-co-MMA20) | 16.3 | 16.0 | ✓ |
P(DMAPMA-co-DMAPMA-C169-co-MMA20) | 8.7 | 9.0 | ✓ |
P(DMAPMA-co-DMAPMA-C1215-co-MMA35) | 16.0 | 15.0 | x |
P(DMAPMA-co-DMAPMA-C127-co-MMA35) | 8.1 | 7.0 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsougera, M.F.; Adamopoulou, S.; Druvari, D.; Vlamis-Gardikas, A.; Iatridi, Z.; Bokias, G. Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity. Polymers 2025, 17, 1896. https://doi.org/10.3390/polym17141896
Koutsougera MF, Adamopoulou S, Druvari D, Vlamis-Gardikas A, Iatridi Z, Bokias G. Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity. Polymers. 2025; 17(14):1896. https://doi.org/10.3390/polym17141896
Chicago/Turabian StyleKoutsougera, Maria Filomeni, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi, and Georgios Bokias. 2025. "Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity" Polymers 17, no. 14: 1896. https://doi.org/10.3390/polym17141896
APA StyleKoutsougera, M. F., Adamopoulou, S., Druvari, D., Vlamis-Gardikas, A., Iatridi, Z., & Bokias, G. (2025). Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity. Polymers, 17(14), 1896. https://doi.org/10.3390/polym17141896