Waste Coffee Silver Skin as a Natural Filler in PLA-Based Filaments for Fused Filament Fabrication (FFF) Printing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Composites and Biofilaments for FFF
2.3. Sample Preparation for 3D Printing and Injection Molding
2.4. Composites Characterization
2.4.1. Melt Flow Index (MFI)
2.4.2. Thermogravimetric Analysis (TGA)
2.5. Three-Dimensional Sample Characterization
2.5.1. Measurement of Dimensional Accuracy
2.5.2. Tensile Testing
2.5.3. Optical Microscopy
3. Results and Discussion
3.1. Filler Characterization
3.1.1. Characterization of PLA-CSS Composites
- Melt Flow Index
- 2.
- Thermogravimetric Analysis
3.1.2. Challenges in Producing CSS-Filled PLA Filaments for FFF Printing
3.1.3. Characterization of 3D Samples
- Dimensional accuracy
- 2.
- Bright field microscopy
- 3.
- Tensile properties of FFF-printed vs. injection-molded composites
4. Conclusions
- Increasing printing temperature and higher CSS content can compromise dimensional stability but enhance material fluidity.
- An optimal concentration of 5% CSS resulted in notable improvements in both mechanical properties and dimensional stability, indicating a balance between reinforcement and flowability.
- The 5% CSS composite exhibited consistently low dimensional errors in both thickness and width, indicating reduced sensitivity to temperature variations, making it suitable for applications where dimensional stability is crucial.
- Mechanical behavior was influenced by printing temperature, affecting interlayer adhesion and filler dispersion, particularly at higher CSS concentrations.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Tanveer, M.; Khan, S.A.R.; Umar, M.; Yu, Z.; Sajid, M.J.; Haq, I.U. Waste Management and Green Technology: Future Trends in Circular Economy Leading towards Environmental Sustainability. Environ. Sci. Pollut. Res. 2022, 29, 80161–80178. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.H.M.; Jesus, R.M.; Santana, G.M.; Pereira, T.B. Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review. J. Compos. Sci. 2024, 8, 67. [Google Scholar] [CrossRef]
- Van den Eynde, M.; Van Puyvelde, P. 3D Printing of Poly(Lactic Acid). In Advances in Polymer Science; Springer: New York, NY, USA, 2018; Volume 282, pp. 139–158. [Google Scholar]
- Joseph, T.M.; Kallingal, A.; Suresh, A.M.; Mahapatra, D.K.; Hasanin, M.S.; Haponiuk, J.; Thomas, S. 3D Printing of Polylactic Acid: Recent Advances and Opportunities. Int. J. Adv. Manuf. Technol. 2023, 125, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.F.; Branco, A.C.; Cláudio, R.; Marques, A.C.; Figueiredo-Pina, C.G. Development of Composites of PLA Filled with Different Amounts of Rice Husk Fibers for Fused Deposition Modeling. J. Nat. Fibers 2023, 20, 2162183. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural Fiber Reinforced Polylactic Acid Composites: A Review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Ishak, M.R.; Mohammad Taha, M.; Mustapha, F.; Leman, Z. A Review of Natural Fiber-Based Filaments for 3D Printing: Filament Fabrication and Characterization. Materials 2023, 16, 4052. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Mechanical and Microstructural Analysis of Glass Fibre-Reinforced High Density Polyethylene Thermoplastic Waste Composites Manufactured by Material Extrusion 3D Printing Technology. Compos. Part A Appl. Sci. Manuf. 2025, 194, 108930. [Google Scholar] [CrossRef]
- Gamiz-Conde, A.K.; Burelo, M.; Franco-Urquiza, E.A.; Martínez-Franco, E.; Luna-Barcenas, G.; Bravo-Alfaro, D.A.; Treviño-Quintanilla, C.D. Development and Properties of Bio-Based Polymer Composites Using PLA and Untreated Agro-Industrial Residues. Polym. Test. 2024, 139, 108576. [Google Scholar] [CrossRef]
- Landes, S.; Letcher, T. Mechanical Strength of Bamboo Filled Pla Composite Material in Fused Filament Fabrication. J. Compos. Sci. 2020, 4, 159. [Google Scholar] [CrossRef]
- Zandi, M.D.; Jerez-Mesa, R.; Lluma-Fuentes, J.; Jorba-Peiro, J.; Travieso-Rodriguez, J.A. Study of the Manufacturing Process Effects of Fused Filament Fabrication and Injection Molding on Tensile Properties of Composite PLA-Wood Parts. Int. J. Adv. Manuf. Technol. 2020, 108, 1725–1735. [Google Scholar] [CrossRef]
- Ayrilmis, N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018, 71, 163–166. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Palumbo, E.; Corcione, C.E. Development and Characterization of Sustainable PLA/Olive Wood Waste Composites for Rehabilitation Applications Using Fused Filament Fabrication (FFF). J. Build. Eng. 2022, 56, 104673. [Google Scholar] [CrossRef]
- Doğru, A.; Sözen, A.; Seydibeyoğlu, M.Ö.; Beşer, G. Hemp Reinforced Polylactic Acid (PLA) Composite Produced by Fused Filament Fabrication (FFF). Hacet. J. Biol. Chem. 2022, 50, 239–246. [Google Scholar] [CrossRef]
- Dey, A.; Rahman, M.M.; Yodo, N.; Grewell, D. Development of Biocomposite Filament for Fused Filament Fabrication from Soy Hulls and Soy Protein Isolate. Mater. Today Commun. 2023, 34, 105316. [Google Scholar] [CrossRef]
- Carichino, S.; Scanferla, D.; Fico, D.; Rizzo, D.; Ferrari, F.; Jordá-Reolid, M.; Martínez-García, A.; Corcione, C.E. Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers 2023, 15, 4323. [Google Scholar] [CrossRef]
- Daver, F.; Lee, K.P.M.; Brandt, M.; Shanks, R. Cork–PLA Composite Filaments for Fused Deposition Modelling. Compos. Sci. Technol. 2018, 168, 230–237. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Esposito Corcione, C. Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing. Materials 2024, 17, 1260. [Google Scholar] [CrossRef]
- Xiao, X.; Chevali, V.S.; Song, P.; Yu, B.; Feng, J.; Loh, T.W.; Wang, H. Mechanical Properties and Microstructure of Hemp Hurd Reinforced Polylactide Biocomposites for 3D Printing. Polym. Compos. 2024, 46, 4927–4937. [Google Scholar] [CrossRef]
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef]
- Carnier, R.; Severiano Berton, R.; Coscione, A.R.; Moreno Pires, A.M.; Corbo, J.Z. Coffee Silverskin and Expired Coffee Powder Used as Organic Fertilizers. Coffee Sci. 2019, 14, 24–32. [Google Scholar] [CrossRef]
- del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A.V. Converting Coffee Silverskin to Value-Added Products by a Slow Pyrolysis-Based Biorefinery Process. Fuel Process. Technol. 2021, 214, 106708. [Google Scholar] [CrossRef]
- Petaloti, A.I.; Achilias, D.S. The Development of Sustainable Biocomposite Materials Based on Poly(Lactic Acid) and Silverskin, a Coffee Industry By-Product, for Food Packaging Applications. Sustainability 2024, 16, 5075. [Google Scholar] [CrossRef]
- Hejna, A. Coffee Silverskin as a Potential Bio-Based Antioxidant for Polymer Materials: Brief Review. In Proceedings; MDPI: Basel, Switzerland, 2021; Volume 69. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on Utilization and Composition of Coffee Silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Wronka, A.; Del Valle Raydan, N.; Robles, E.; Kowaluk, G. Coffee Silverskin as a Sustainable Alternative Filler for Plywood: Characterization and Performance Analysis. Materials 2025, 18, 1525. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yuan, T.; Yao, Y.; Deng, Y.; Wang, X. PLA/Coffee Grounds Composite for 3D Printing and Its Properties. Forests 2023, 14, 367. [Google Scholar] [CrossRef]
- Romani, A.; Paramatti, M.; Gallo, L.; Levi, M. Large-Format Material Extrusion Additive Manufacturing of PLA, LDPE, and HDPE Compound Feedstock with Spent Coffee Grounds. Int. J. Adv. Manuf. Technol. 2024, 134, 1845–1861. [Google Scholar] [CrossRef]
- Paramatti, M.; Romani, A.; Pugliese, G.; Levi, M. PLA Feedstock Filled with Spent Coffee Grounds for New Product Applications with Large-Format Material Extrusion Additive Manufacturing. ACS Omega 2024, 9, 6423–6431. [Google Scholar] [CrossRef]
- Yu, I.K.M.; Chan, O.Y.; Zhang, Q.; Wang, L.; Wong, K.H.; Tsang, D.C.W. Upcycling of Spent Tea Leaves and Spent Coffee Grounds into Sustainable 3D-Printing Materials: Natural Plasticization and Low-Energy Fabrication. ACS Sustain. Chem. Eng. 2023, 11, 6230–6240. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030561277. [Google Scholar]
- Sam-Daliri, O.; Flanagan, T.; Modi, V.; Finnegan, W.; Harrison, N.; Ghabezi, P. Composite Upcycling: An Experimental Study on Mechanical Behaviour of Injection Moulded Parts Prepared from Recycled Material Extrusion Printed Parts, Previously Prepared Using Glass Fibre Polypropylene Composite Industry Waste. J. Clean. Prod. 2025, 499, 145280. [Google Scholar] [CrossRef]
- Cisneros-López, E.O.; Pal, A.K.; Rodriguez, A.U.; Wu, F.; Misra, M.; Mielewski, D.F.; Kiziltas, A.; Mohanty, A.K. Recycled Poly(Lactic Acid)–Based 3D Printed Sustainable Biocomposites: A Comparative Study with Injection Molding. Mater. Today Sustain. 2020, 7–8, 100027. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics-Determination of Tensile Properties-Copyright Protected Document. ISO: Geneva, Switzerland, 2012.
- Kumar, K.S.; Gairola, S.; Singh, I. Waste Coffee Silverskin as a Potential Filler in Sustainable Composites: Mechanical, Thermal, and Microstructural Analysis. Ind. Crops. Prod. 2024, 210, 118088. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis. Polym. Degrad. Stab. 2008, 93, 90–98. [Google Scholar] [CrossRef]
- Velghe, I.; Buffel, B.; Vandeginste, V.; Thielemans, W.; Desplentere, F. Review on the Degradation of Poly(Lactic Acid) during Melt Processing. Polymers 2023, 15, 2047. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, Y.; Liu, M.; Meng, L.; Li, C. A Review of Research and Application of Polylactic Acid Composites. J. Appl. Polym. Sci. 2023, 140, e53477. [Google Scholar] [CrossRef]
- Gigante, V.; Seggiani, M.; Cinelli, P.; Signori, F.; Vania, A.; Navarini, L.; Amato, G.; Lazzeri, A. Utilization of Coffee Silverskin in the Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biopolymer-Based Thermoplastic Biocomposites for Food Contact Applications. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106172. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Yussuf, A.A.; Massoumi, I.; Hassan, A. Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. J. Polym. Environ. 2010, 18, 422–429. [Google Scholar] [CrossRef]
- Asim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal Stability of Natural Fibers and Their Polymer Composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]
- Frunzaverde, D.; Cojocaru, V.; Ciubotariu, C.R.; Miclosina, C.O.; Ardeljan, D.D.; Ignat, E.F.; Marginean, G. The Influence of the Printing Temperature and the Filament Color on the Dimensional Accuracy, Tensile Strength, and Friction Performance of FFF-Printed PLA Specimens. Polymers 2022, 14, 1978. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]
- Zharylkassyn, B.; Perveen, A.; Talamona, D. Effect of Process Parameters and Materials on the Dimensional Accuracy of FDM Parts. Mater. Today Proc. 2021, 44, 1307–1311. [Google Scholar] [CrossRef]
- Tao, Y.; Kong, F.; Li, Z.; Zhang, J.; Zhao, X.; Yin, Q.; Xing, D.; Li, P. A Review on Voids of 3D Printed Parts by Fused Filament Fabrication. J. Mater. Res. Technol. 2021, 15, 4860–4879. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Compos. B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Spoerk, M.; Arbeiter, F.; Cajner, H.; Sapkota, J.; Holzer, C. Parametric Optimization of Intra- and Inter-Layer Strengths in Parts Produced by Extrusion-Based Additive Manufacturing of Poly(Lactic Acid). J. Appl. Polym. Sci. 2017, 134, 45401. [Google Scholar] [CrossRef]
- Rivera-López, F.; Pavón, M.M.L.; Correa, E.C.; Molina, M.H. Effects of Nozzle Temperature on Mechanical Properties of Polylactic Acid Specimens Fabricated by Fused Deposition Modeling. Polymers 2024, 16, 1867. [Google Scholar] [CrossRef]
- DeArmitt, C. Particulate-Filled Polymer Composites; Rothon, R.N., Ed.; RAPRA: Shrewsbury, UK, 2003; Volume 8, pp. 357–424. [Google Scholar]
Material | Temperature (°C) | Extrusion Rate (r.p.m.) | |||
---|---|---|---|---|---|
Feed Zone | Compression Zone | Metering Zone | Die | ||
0% CSS | 170 | 185 | 190 | 170 | 2.5 |
5% CSS | 174 | 190 | 182 | 164 | 2.8 |
10% CSS | 180 | 190 | 170 | 160 | 2.0 |
15% CSS | 174 | 190 | 182 | 164 | 2.8 |
0% CSS | 5% CSS | 10% CSS | 15% CSS |
---|---|---|---|
1.67 ± 0.10 | 1.69 ± 0.07 | 1.71 ± 0.07 | 1.72 ± 0.07 |
Temperature (°C) | Composite (% CSS) | Width (mm) | Thickness (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
5.00 | 2.00 | ||||||||
Measured Value | Standard Deviation | Error (1) | Measured Value | Standard Deviation | Error (1) | ||||
mm | % | mm | % | ||||||
180 | 0 | 5.01 | 0.06 | 0.01 | 0.1 | 2.11 | 0.01 | 0.11 | 5.6 |
5 | 5.05 | 0.06 | 0.05 | 0.9 | 2.11 | 0.02 | 0.11 | 5.6 | |
10 | 5.08 | 0.01 | 0.08 | 1.5 | 2.10 | 0.02 | 0.10 | 4.8 | |
15 | 5.13 | 0.04 | 0.13 | 2.6 | 2.11 | 0.02 | 0.11 | 5.6 | |
200 | 0 | 5.01 | 0.04 | 0.01 | 0.2 | 2.13 | 0. 00 | 0.13 | 6.4 |
5 | 5.07 | 0.05 | 0.07 | 1.5 | 2.15 | 0. 03 | 0.15 | 7.7 | |
10 | 5.20 | 0.04 | 0.20 | 3.9 | 2.15 | 0. 02 | 0.15 | 7.4 | |
15 | 5.21 | 0.04 | 0.21 | 4.2 | 2.18 | 0. 02 | 0.18 | 8.9 | |
220 | 0 | 5.05 | 0.02 | 0.05 | 1.0 | 2.14 | 0. 04 | 0.14 | 6.9 |
5 | 5.07 | 0.06 | 0.07 | 1.5 | 2.16 | 0. 02 | 0.16 | 8.0 | |
10 | 5.23 | 0.04 | 0.23 | 4.6 | 2.21 | 0. 03 | 0.21 | 10.5 | |
15 | 5.25 | 0.07 | 0.25 | 5.1 | 2.21 | 0. 04 | 0.21 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, A.C.; Costa, A.F.; Rodrigues, Â.R.; Moreira, P.F.; Duarte, F.M.; Pontes, A.J. Waste Coffee Silver Skin as a Natural Filler in PLA-Based Filaments for Fused Filament Fabrication (FFF) Printing. Polymers 2025, 17, 1766. https://doi.org/10.3390/polym17131766
Machado AC, Costa AF, Rodrigues ÂR, Moreira PF, Duarte FM, Pontes AJ. Waste Coffee Silver Skin as a Natural Filler in PLA-Based Filaments for Fused Filament Fabrication (FFF) Printing. Polymers. 2025; 17(13):1766. https://doi.org/10.3390/polym17131766
Chicago/Turabian StyleMachado, Ana C., Ana F. Costa, Ângela R. Rodrigues, Pedro F. Moreira, Fernando M. Duarte, and António J. Pontes. 2025. "Waste Coffee Silver Skin as a Natural Filler in PLA-Based Filaments for Fused Filament Fabrication (FFF) Printing" Polymers 17, no. 13: 1766. https://doi.org/10.3390/polym17131766
APA StyleMachado, A. C., Costa, A. F., Rodrigues, Â. R., Moreira, P. F., Duarte, F. M., & Pontes, A. J. (2025). Waste Coffee Silver Skin as a Natural Filler in PLA-Based Filaments for Fused Filament Fabrication (FFF) Printing. Polymers, 17(13), 1766. https://doi.org/10.3390/polym17131766