Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cultivation Conditions
2.2. Ex Situ Functionalization
2.3. In Situ Functionalization
2.4. Characterizations
2.5. Molecular Identification of Acetic Acid Bacteria
2.6. Statistical Data Analysis
3. Results
3.1. Ex Situ Functionalization
3.2. In Situ Functionalization
3.3. Acetic Acid Bacteria Strains Characteristics and Species Assignment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Response | Equation |
---|---|
Film quality | = +0.633333 × FeCl2 +2.36667 × FeSO4 −3.60000 × FeCl2 × FeSO4 +0.020000 × FeCl2 × Sonication time −0.020000 × FeSO4 × Sonication time +0.160000 × FeCl2 × FeSO4 × Sonication time (Strain = K2G30) = +2.60000 × FeCl2 +3.08000 × FeSO4 +3.12000 × FeCl2 × FeSO4 +0.040000 × FeCl2 × Sonication time −0.048000 × FeSO4 × Sonication time −0.232000 × FeCl2 × FeSO4 × Sonication time (Strain = K2G44) |
Fe % | = +38.53330 × FeCl2 +30.29563 × FeSO4 −0.001430 × Sonication time −30.15726 × FeCl2 × FeSO4 −0.600468 × FeCl2 × Sonication time −0.370344 × FeSO4 × Sonication time +0.008329 × Sonication time2 (Strain = K2G30) +45.39840 × FeCl2 +22.13853 × FeSO4 +0.001430 × Sonication time −30.15726 × FeCl2 × FeSO4 −0.600468 × FeCl2 × Sonication time −0.370344 × FeSO4 × Sonication time +0.008329 × Sonication time2 (Strain = K2G44) |
References
- Gullo, M.; La China, S.; Falcone, P.M.; Giudici, P. Biotechnological Production of Cellulose by Acetic Acid Bacteria: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 6885–6898. [Google Scholar] [CrossRef] [PubMed]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Shi, Z.; Gauthier, M.; Yang, G. Bacterial Cellulose: Molecular Regulation of Biosynthesis, Supramolecular Assembly, and Tailored Structural and Functional Properties. Prog. Mater. Sci. 2022, 129, 100972. [Google Scholar] [CrossRef]
- Jančič, U.; Trček, J.; Verestiuc, L.; Vukomanović, M.; Gorgieva, S. Bacterial Nanocellulose Loaded with Bromelain and Nisin as a Promising Bioactive Material for Wound Debridement. Int. J. Biol. Macromol. 2024, 266, 131329. [Google Scholar] [CrossRef]
- Saleh, A.K.; Ray, J.B.; El-Sayed, M.H.; Alalawy, A.I.; Omer, N.; Abdelaziz, M.A.; Abouzeid, R. Functionalization of Bacterial Cellulose: Exploring Diverse Applications and Biomedical Innovations: A Review. Int. J. Biol. Macromol. 2024, 264, 130454. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, T.R.; Yang, X.; Zhang, J.; Cao, X. In Situ and Ex Situ Modifications of Bacterial Cellulose for Applications in Tissue Engineering. Mater. Sci. Eng. C 2018, 82, 372–383. [Google Scholar] [CrossRef]
- Vilela, C.; Oliveira, H.; Almeida, A.; Silvestre, A.J.D.; Freire, C.S.R. Nanocellulose-Based Antifungal Nanocomposites against the Polymorphic Fungus Candida Albicans. Carbohydr. Polym. 2019, 217, 207–216. [Google Scholar] [CrossRef]
- Gilmour, K.A.; Aljannat, M.; Markwell, C.; James, P.; Scott, J.; Jiang, Y.; Torun, H.; Dade-Robertson, M.; Zhang, M. Biofilm Inspired Fabrication of Functional Bacterial Cellulose through Ex-Situ and in-Situ Approaches. Carbohydr. Polym. 2023, 304, 120482. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.-L.; Jia, H.-P.; Chen, K.-H.; Wu, F.-F.; Gao, J.; Hu, Y.; Chen, Y.; Huang, C. Effect of In-Situ Biochemical Modification on the Synthesis, Structure, and Function of Xanthan Gum Based Bacterial Cellulose Generated from Tieguanyin Oolong Tea Residue Hydrolysate. Food Chem. 2024, 432, 137133. [Google Scholar] [CrossRef]
- Dhar, P.; Sugimura, K.; Yoshioka, M.; Yoshinaga, A.; Kamitakahara, H. Synthesis-Property-Performance Relationships of Multifunctional Bacterial Cellulose Composites Fermented in Situ Alkali Lignin Medium. Carbohydr. Polym. 2021, 252, 117114. [Google Scholar] [CrossRef]
- Dhar, P.; Sugimura, K.; Yoshioka, M.; Yoshinaga, A.; Kamitakahara, H. Fabrication of Wood-Inspired High-Performance Composites through Fermentation Routes. Cellulose 2022, 29, 2927–2947. [Google Scholar] [CrossRef]
- Greenhope, P.C.G.; Loh, J.; Gilmour, K.A.; Zhang, M.; Haworth, L.; Xie, M.; Dade-Robertson, M.; Jiang, Y. Silicon-Infused Bacterial Cellulose: In Situ Bioprocessing for Tailored Strength and Surface Characteristics. Cellulose 2024, 31, 6663–6679. [Google Scholar] [CrossRef]
- Jin, K.; Jin, C.; Wu, Y. Synthetic Biology-Powered Microbial Co-Culture Strategy and Application of Bacterial Cellulose-Based Composite Materials. Carbohydr. Polym. 2022, 283, 119171. [Google Scholar] [CrossRef] [PubMed]
- Brugnoli, M.; Mazzini, I.; La China, S.; De Vero, L.; Gullo, M. A Microbial Co-Culturing System for Producing Cellulose-Hyaluronic Acid Composites. Microorganisms 2023, 11, 1504. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Khumsupan, D.; Lin, S.-P.; Santoso, S.P.; Hsu, H.-Y.; Cheng, K.-C. Production of Bacterial Cellulose (BC)/Nisin Composite with Enhanced Antibacterial and Mechanical Properties through Co-Cultivation of Komagataeibacter Xylinum and Lactococcus Lactis Subsp. Lactis. Int. J. Biol. Macromol. 2024, 258, 128977. [Google Scholar] [CrossRef]
- Lei, W.; Jin, D.; Liu, H.; Tong, Z.; Zhang, H. An Overview of Bacterial Cellulose in Flexible Electrochemical Energy Storage. ChemSusChem 2020, 13, 3731–3753. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, D.; Li, Y.; Sun, S.; Zheng, J.; Cui, J.; Wang, G.; Zheng, L.; Wang, Y.; Zhou, H. High-Performance Green Electronic Substrate Employing Flexible and Transparent Cellulose Films. Carbohydr. Polym. 2021, 270, 118359. [Google Scholar] [CrossRef]
- Kim, J.; Chen, Y. Cellulose Electro-Active Paper for Biomedical Applications. In Proceedings of the ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology, ASMEDC, Houston, TX, USA, 1 January 2010; pp. 3–4. [Google Scholar]
- Jeon, J.-H.; Oh, I.-K.; Kee, C.-D.; Kim, S.-J. Bacterial Cellulose Actuator with Electrically Driven Bending Deformation in Hydrated Condition. Sens. Actuators B Chem. 2010, 146, 307–313. [Google Scholar] [CrossRef]
- Liao, J.; Shamshina, J.L.; Wang, Y.; Sun, D.; Shen, X.; Zhao, D.; Sun, Q. Emerging Cellulosic Materials for Sustainable Mechanosensing and Energy Harvesting Devices: Advances and Prospect. Nano Today 2024, 56, 102232. [Google Scholar] [CrossRef]
- Abir, S.S.H.; Smith, C.; Zornitzer, J.; Samuel, J.; Akin, S. A Composite Bacterial Cellulose for Enhanced-Performance Triboelectric and Piezoelectric Nanogenerators. Nano Energy 2025, 141, 111123. [Google Scholar] [CrossRef]
- Fu, C.; Han, X.; Zhang, Y.; Hu, J.; Du, J.; Wang, H. Synergistic Functionality of Metal–Organic Framework-Cellulose Composites Structures for Advanced High-Performance Energy Materials. Chem. Eng. J. 2025, 503, 158384. [Google Scholar] [CrossRef]
- Song, J.; Babayekhorasani, F.; Spicer, P.T. Soft Bacterial Cellulose Microcapsules with Adaptable Shapes. Biomacromolecules 2019, 20, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Katepetch, C.; Rujiravanit, R. Synthesis of Magnetic Nanoparticle into Bacterial Cellulose Matrix by Ammonia Gas-Enhancing in Situ Co-Precipitation Method. Carbohydr. Polym. 2011, 86, 162–170. [Google Scholar] [CrossRef]
- Chanthiwong, M.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S. Controlling the Processing of Co-Precipitated Magnetic Bacterial Cellulose/Iron Oxide Nanocomposites. Mater. Des. 2020, 196, 109148. [Google Scholar] [CrossRef]
- Zeng, M.; Laromaine, A.; Feng, W.; Levkin, P.A.; Roig, A. Origami Magnetic Cellulose: Controlled Magnetic Fraction and Patterning of Flexible Bacterial Cellulose. J. Mater. Chem. C 2014, 2, 6312–6318. [Google Scholar] [CrossRef]
- Kong, D.; Wilson, L.D. Structural Study of Cellulose-Iron Oxide Composite Materials. MSCE 2018, 06, 65–77. [Google Scholar] [CrossRef]
- Calvini, P.; Silveira, M. FTIR analysis of naturally aged FeCl3 and CuCl2-doped cellulose papers. E-Preserv. Sci. 2008, 5, 1–8. [Google Scholar]
- Wang, Y.M.; Cao, X.; Liu, G.H.; Hong, R.Y.; Chen, Y.M.; Chen, X.F.; Li, H.Z.; Xu, B.; Wei, D.G. Synthesis of Fe3O4 Magnetic Fluid Used for Magnetic Resonance Imaging and Hyperthermia. J. Magn. Magn. Mater. 2011, 323, 2953–2959. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, L.; Wang, D.; Wang, M.; Lin, Z.; Tang, H. Sono-Assisted Preparation of Highly-Efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2. Ultrason. Sonochemistry 2010, 17, 526–533. [Google Scholar] [CrossRef]
- La China, S.; Zanichelli, G.; De Vero, L.; Gullo, M. Oxidative Fermentations and Exopolysaccharides Production by Acetic Acid Bacteria: A Mini Review. Biotechnol. Lett. 2018, 40, 1289–1302. [Google Scholar] [CrossRef]
- Anguluri, K.; La China, S.; Brugnoli, M.; De Vero, L.; Pulvirenti, A.; Cassanelli, S.; Gullo, M. Candidate Acetic Acid Bacteria Strains for Levan Production. Polymers 2022, 14, 2000. [Google Scholar] [CrossRef]
- Liu, I.-T.; Meemai, P.; Lin, Y.-H.; Fang, C.-J.; Huang, C.-C.; Li, C.-Y.; Phisalaphong, M.; You, J.-L.; Tung, S.-H.; Balaji, R.; et al. Bacterial Cellulose Materials in Sustainable Energy Devices: A Review. Int. J. Biol. Macromol. 2024, 281, 135804. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; Sola, A.; Zanichelli, G.; Montorsi, M.; Messori, M.; Giudici, P. Increased Production of Bacterial Cellulose as Starting Point for Scaled-up Applications. Appl. Microbiol. Biotechnol. 2017, 101, 8115–8127. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; Caggia, C.; De Vero, L.; Giudici, P. Characterization of Acetic Acid Bacteria in “Traditional Balsamic Vinegar”. Int. J. Food Microbiol. 2006, 106, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A Database Tandem for Fast and Reliable Genome-Based Classification and Nomenclature of Prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent Updates and New Developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 5 May 2025).
- González, J.; Ghaffarinejad, A.; Ivanov, M.; Ferreira, P.; Vilarinho, P.M.; Borrás, A.; Amorín, H.; Wicklein, B. Advanced Cellulose–Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators. Nanomaterials 2023, 13, 1206. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, F.; Pan, Y.; Jin, L.; Liu, B.; Mao, Y.; Huang, J. Multiwall-Carbon-Nanotube/Cellulose Composite Fibers with Enhanced Mechanical and Electrical Properties by Cellulose Grafting. RSC Adv. 2018, 8, 5678–5684. [Google Scholar] [CrossRef]
- Gupta, V.; Shekhawat, S.S.; Kulshreshtha, N.M.; Gupta, A.B. A Systematic Review on Chlorine Tolerance among Bacteria and Standardization of Their Assessment Protocol in Wastewater. Water Sci. Technol. 2022, 86, 261–291. [Google Scholar] [CrossRef] [PubMed]
- Sourty, E.; Ryan, D.H.; Marchessault, R.H. Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 1998, 5, 5–17. [Google Scholar] [CrossRef]
- Mamlouk, D.; Gullo, M. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian. J. Microbiol. 2013, 53, 377–384. [Google Scholar] [CrossRef]
- La China, S.; De Vero, L.; Anguluri, K.; Brugnoli, M.; Mamlouk, D.; Gullo, M. Kombucha Tea as a Reservoir of Cellulose Producing Bacteria: Assessing Diversity among Komagataeibacter Isolates. Appl. Sci. 2021, 11, 1595. [Google Scholar] [CrossRef]
- Gullo, M.; La China, S.; Petroni, G.; Di Gregorio, S.; Giudici, P. Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media. Front. Microbiol. 2019, 10, 58. [Google Scholar] [CrossRef]
- Barbi, S.; Taurino, C.; La China, S.; Anguluri, K.; Gullo, M.; Montorsi, M. Mechanical and Structural Properties of Environmental Green Composites Based on Functionalized Bacterial Cellulose. Cellulose 2021, 28, 1431–1442. [Google Scholar] [CrossRef]
- Zeng, M.; Laromaine, A.; Roig, A. Bacterial Cellulose Films: Influence of Bacterial Strain and Drying Route on Film Properties. Cellulose 2014, 21, 4455–4469. [Google Scholar] [CrossRef]
- Bi, J.-C.; Liu, S.-X.; Li, C.-F.; Li, J.; Liu, L.-X.; Deng, J.; Yang, Y.-C. Morphology and Structure Characterization of Bacterial Celluloses Produced by Different Strains in Agitated Culture. J. Appl. Microbiol. 2014, 117, 1305–1311. [Google Scholar] [CrossRef]
- Singhsa, P.; Narain, R.; Manuspiya, H. Physical Structure Variations of Bacterial Cellulose Produced by Different Komagataeibacter Xylinus Strains and Carbon Sources in Static and Agitated Conditions. Cellulose 2018, 25, 1571–1581. [Google Scholar] [CrossRef]
- Vázquez, M.; Puertas, G.; Cazón, P. Processing of Grape Bagasse and Potato Wastes for the Co-Production of Bacterial Cellulose and Gluconic Acid in an Airlift Bioreactor. Polymers 2023, 15, 3944. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Azi, F.; Ge, Z.-W.; Liu, Y.-F.; Yin, X.-T.; Dong, M.-S. Bio-Conversion of Kitchen Waste into Bacterial Cellulose Using a New Multiple Carbon Utilizing Komagataeibacter Rhaeticus: Fermentation Profiles and Genome-Wide Analysis. Int. J. Biol. Macromol. 2021, 191, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-P.; Loira Calvar, I.; Catchmark, J.M.; Liu, J.-R.; Demirci, A.; Cheng, K.-C. Biosynthesis, Production and Applications of Bacterial Cellulose. Cellulose 2013, 20, 2191–2219. [Google Scholar] [CrossRef]
- Potočnik, V.; Gorgieva, S.; Trček, J. From Nature to Lab: Sustainable Bacterial Cellulose Production and Modification with Synthetic Biology. Polymers 2023, 15, 3466. [Google Scholar] [CrossRef] [PubMed]
- Dellaglio, F.; Cleenwerck, I.; Felis, G.E.; Engelbeen, K.; Janssens, D.; Marzotto, M. Description of Gluconacetobacter Swingsii Sp. Nov. and Gluconacetobacter Rhaeticus Sp. Nov., Isolated from Italian Apple Fruit. Int. J. Syst. Evol. Microbiol. 2005, 55, 2365–2370. [Google Scholar] [CrossRef]
- Semjonovs, P.; Ruklisha, M.; Paegle, L.; Saka, M.; Treimane, R.; Skute, M.; Rozenberga, L.; Vikele, L.; Sabovics, M.; Cleenwerck, I. Cellulose Synthesis by Komagataeibacter Rhaeticus Strain P 1463 Isolated from Kombucha. Appl. Microbiol. Biotechnol. 2017, 101, 1003–1012. [Google Scholar] [CrossRef]
- Li, Z.; Azi, F.; Dong, J.; Liu, L.; Ge, Z.; Dong, M. Green and Efficient In-Situ Biosynthesis of Antioxidant and Antibacterial Bacterial Cellulose Using Wine Pomace. Int. J. Biol. Macromol. 2021, 193, 2183–2191. [Google Scholar] [CrossRef]
- Brugnoli, M.; La China, S.; Lasagni, F.; Romeo, F.V.; Pulvirenti, A.; Gullo, M. Acetic Acid Bacteria in Agro-Wastes: From Cheese Whey and Olive Mill Wastewater to Cellulose. Appl. Microbiol. Biotechnol. 2023, 107, 3729–3744. [Google Scholar] [CrossRef]
- Mohammad, N.H.; EL-Sherbiny, G.M.; Hammad, A.A.; Askar, A.A.; El- Nour, S.A.A. Gamma-Ray and Sunlight-Induced Synthesis of Silver Nanoparticles Using Bacterial Cellulose and Cell-Free Filtrate Produced by Komagataeibacter Rhaeticus N1 MW322708 Strain. Cellulose 2022, 29, 1791–1805. [Google Scholar] [CrossRef]
- Yoon, S.H.; Jin, H.-J.; Kook, M.-C.; Pyun, Y.R. Electrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes. Biomacromolecules 2006, 7, 1280–1284. [Google Scholar] [CrossRef]
- Żywicka, A.; Ciecholewska-Juśko, D.; Drozd, R.; Rakoczy, R.; Konopacki, M.; Kordas, M.; Junka, A.; Migdał, P.; Fijałkowski, K. Preparation of Komagataeibacter Xylinus Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor. Polymers 2021, 13, 3950. [Google Scholar] [CrossRef]
- Brugnoli, M.; Robotti, F.; La China, S.; Anguluri, K.; Haghighi, H.; Bottan, S.; Ferrari, A.; Gullo, M. Assessing Effectiveness of Komagataeibacter Strains for Producing Surface-Microstructured Cellulose via Guided Assembly-Based Biolithography. Sci. Rep. 2021, 11, 19311. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Pitts, B.; Stewart, P.S.; Camper, A.; Yoon, J. Comparison of the Antimicrobial Effects of Chlorine, Silver Ion, and Tobramycin on Biofilm. Antimicrob. Agents Chemother. 2008, 52, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Nwamaka Anthonia, D.; Edna Ifeoma, C.; Charles Onuora, C. Evaluation of Different Salts and Heavy Metal Concentrations on Bacterial Biofilm from Selected Surface and Borehole Water Samples. FEM 2020, 6, 11. [Google Scholar] [CrossRef]
- Park, M.; Cheng, J.; Choi, J.; Kim, J.; Hyun, J. Electromagnetic Nanocomposite of Bacterial Cellulose Using Magnetite Nanoclusters and Polyaniline. Colloids Surf. B Biointerfaces 2013, 102, 238–242. [Google Scholar] [CrossRef]
- Paul, U.C.; Manian, A.P.; Široká, B.; Duelli, H.; Bechtold, T. Sorption of Iron(III)–Alginate Complexes on Cellulose Fibres. Cellulose 2013, 20, 2481–2490. [Google Scholar] [CrossRef]
- Zhang, X.; Matsuura, H.; Tsukihashi, F. Enhancement of the Dissolution of Nutrient Elements from Steelmaking Slag into Seawater by Gluconic Acid. J. Sustain. Metall. 2015, 1, 134–143. [Google Scholar] [CrossRef]
- Powers, J.M.; Buchanan, G.R. Disorders of Iron Metabolism. Hematol. Oncol. Clin. N. Am. 2019, 33, 393–408. [Google Scholar] [CrossRef]
- Ponka, P.; Tenenbein, M.; Eaton, J.W. Iron. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; pp. 879–902. ISBN 9780444594532. [Google Scholar]
- Guesh, K.; Caiuby, C.A.D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017, 17, 1806–1813. [Google Scholar] [CrossRef]
- De Souza, T.C.; Costa, A.F.D.S.; Vinhas, G.M.; Sarubbo, L.A. Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications. Polymers 2023, 15, 3284. [Google Scholar] [CrossRef]
- Tao, S.; Yang, Q.; Qiu, H.; Zhu, J.; Zhou, W.; Su, J.; Zhang, N.; Xu, L.; Pan, H.; Zhang, H.; et al. Impact of Metal Salt Oxidants and Preparation Technology on Efficacy of Bacterial Cellulose/Polypyrrole Flexible Conductive Fiber Membranes. Materials 2024, 17, 1281. [Google Scholar] [CrossRef]
- Chaabane, L.; Chahdoura, H.; Mehdaoui, R.; Snoussi, M.; Beyou, E.; Lahcini, M.; V Baouab, M.H. Functionalization of Developed Bacterial Cellulose with Magnetite Nanoparticles for Nanobiotechnology and Nanomedicine Applications. Carbohydr. Polym. 2020, 247, 116707. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Eun Song, J.; Silva, C.; Kim, H.R. Production of Conductive Bacterial Cellulose-Polyaniline Membranes in the Presence of Metal Salts. Text. Res. J. 2020, 90, 1517–1526. [Google Scholar] [CrossRef]
- Dang, X.; Fu, Y.; Wang, X. Versatile Biomass-Based Injectable Photothermal Hydrogel for Integrated Regenerative Wound Healing and Skin Bioelectronics. Adv. Funct. Mater. 2024, 34, 2405745. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Han, Z.; Qu, X.; Jin, M.; Deng, L.; Liang, Q.; Jia, Y.; Wang, H. High Performance Bacterial Cellulose Organogel-Based Thermoelectrochemical Cells by Organic Solvent-Driven Crystallization for Body Heat Harvest and Self-Powered Wearable Strain Sensors. Adv. Funct. Mater. 2023, 33, 2306509. [Google Scholar] [CrossRef]
Factors | Responses | |||||
---|---|---|---|---|---|---|
Run | A: FeCl2 | B: FeSO4 | C: Sonication Time | D: Strain | Film Quality | Fe |
% | % | min | % | |||
1 | 0 | 100 | 43 | K2G44 | 1 | 20.62 |
2 | 50 | 50 | 10 | K2G44 | 3 | 24.49 |
3 | 50 | 50 | 35 | K2G30 | 2 | 21.03 |
4 | 50 | 50 | 35 | K2G30 | 2 | 20.78 |
5 | 0 | 100 | 22 | K2G44 | 2 | 19.45 |
6 | 100 | 0 | 35 | K2G30 | 1 | 22.76 |
7 | 0 | 100 | 35 | K2G30 | 2 | 24.51 |
8 | 0 | 100 | 10 | K2G30 | 2 | 26.92 |
9 | 100 | 0 | 10 | K2G44 | 3 | 37.52 |
10 | 100 | 0 | 10 | K2G30 | 1 | 35.52 |
11 | 67 | 33 | 60 | K2G44 | 1 | 27.09 |
12 | 0 | 100 | 60 | K2G30 | 1 | 41.08 |
13 | 100 | 0 | 35 | K2G44 | 4 | 37.65 |
14 | 50 | 50 | 60 | K2G30 | 3 | 23.85 |
15 | 50 | 50 | 35 | K2G30 | 2 | 22.83 |
16 | 100 | 0 | 35 | K2G44 | 4 | 34.98 |
17 | 50 | 50 | 10 | K2G44 | 3 | 20.34 |
18 | 67 | 33 | 60 | K2G44 | 1 | 30.84 |
19 | 100 | 0 | 60 | K2G30 | 2 | 34.78 |
Response | p-Value | Significant Factors | R2 | Pred—R2 |
---|---|---|---|---|
Film quality | <0.0001 | A; B; C; D; AB; AC; AD; BC; BD; ABC; ABD; ACD; BCD; ABCD | 0.93 | 0.85 |
Fe % | 0.0013 | A; B; C; D; AB; AC; AD; BC; BD; CD; C2 | 0.87 | 0.77 |
Sample | Resistivity (MΩ) | Sample | Resistivity (MΩ) |
---|---|---|---|
RUN1 | 1.30 ± 0.05 | RUN11 | 0.34 ± 0.04 |
RUN2 | 0.56 ± 0.03 | RUN12 | 1.23± 0.05 |
RUN3 | 0.76 ± 0.07 | RUN13 | 0.45 ± 0.03 |
RUN4 | 1.34 ± 0.04 | RUN14 | 0.43 ± 0.06 |
RUN5 | 0.98 ± 0.05 | RUN15 | 0.43 ± 0.06 |
RUN6 | 0.45 ± 0.08 | RUN16 | 0.24± 0.05 |
RUN7 | 0.43 ± 0.10 | RUN17 | 1.45 ± 0.10 |
RUN8 | 0.45 ± 0.08 | RUN18 | 1.15 ± 0.10 |
RUN9 | 0.43 ± 0.06 | RUN19 | 1.32± 0.05 |
RUN10 | 0.78 ± 0.08 |
Sample | C (%) | O (%) | Na (%) | P (%) | Fe (%) | Cl (%) | S (%) | Others * (%) |
---|---|---|---|---|---|---|---|---|
K2G30 0.05% | 46.43 | 45.52 | 6.94 | 0.55 | - | - | - | 0.36 |
K2G30 0.10% | 13.33 | 70.55 | - | - | 6.97 | - | 8.98 | 0.17 |
K2G44 0.05% | 35.56 | 52.98 | - | - | 6.06 | 3.86 | 1.54 | - |
K2G44 0.10% | 14.19 | 68.97 | - | - | 8.42 | 1.90 | 6.52 | - |
Sample | Resistivity (MΩ) |
---|---|
K2G30 0.05% | 35 ± 4 |
K2G30 0.10% | 27 ± 3 |
K2G44 0.05% | 95 ± 7 |
K2G44 0.10% | 55 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbi, S.; Brugnoli, M.; La China, S.; Montorsi, M.; Gullo, M. Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods. Polymers 2025, 17, 1743. https://doi.org/10.3390/polym17131743
Barbi S, Brugnoli M, La China S, Montorsi M, Gullo M. Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods. Polymers. 2025; 17(13):1743. https://doi.org/10.3390/polym17131743
Chicago/Turabian StyleBarbi, Silvia, Marcello Brugnoli, Salvatore La China, Monia Montorsi, and Maria Gullo. 2025. "Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods" Polymers 17, no. 13: 1743. https://doi.org/10.3390/polym17131743
APA StyleBarbi, S., Brugnoli, M., La China, S., Montorsi, M., & Gullo, M. (2025). Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods. Polymers, 17(13), 1743. https://doi.org/10.3390/polym17131743