Application of Antimicrobial Rubber-Coated Cotton Gloves for Mangosteen-Peel-Extract-Mediated Biosynthesis of Ag–ZnO Nanocomposites
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
| Physical Test | Result | Index | Reference | 
|---|---|---|---|
| Abrasion | Level 1 (ANSI-ISEA 105-2016) | -  Gram load (500) - ≥100 cycles | [36] | 
| Cut | Level 3 (ANSI-ISEA 105-2016) | - ≥ 1000 g | [36] | 
| Tear | Level 3 (ANSI-ISEA 105-2016) | - ≥50 Newton | [37] | 
| Puncture | Level 4 (ANSI-ISEA 105-2016) | - 100–149 Newton | [36] | 
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Agmgt | Ag nanocomposite prepared with mangosteen peel | 
| Znmgt | Zn nanocomposite prepared with mangosteen peel | 
| Ag+Znmgt | 50% Agmgt + 50% Znmgt nanocomposite prepared with mangosteen peel | 
| Ag | Silver | 
| AgNO3 | Silver nitrate | 
| AMG | α-mangostin | 
| C | Carbon | 
| CaCO3 | Calcium carbonate | 
| CAMHB | Cation-adjusted Mueller Hinton broth | 
| CLSI | Clinical and Laboratory Standards Institute guidelines | 
| C12H23KO2 | Potassium laurate | 
| DMSO | Dissolving in dimethyl sulfoxide | 
| KOH | Potassium hydroxide | 
| MDR | Multidrug-resistant | 
| MNP | Metal nanoparticle | 
| MRSA | Methicillin-resistant S. aureus | 
| MIC | Minimal inhibitory concentration | 
| N2O6Zn6H2O | Zinc nitrate hexahydrate | 
| NaOH | Sodium hydroxide | 
| NR | Natural rubber | 
| S | Sulphur | 
| SEM | Scanning electron microscope | 
| SR | Synthetic | 
| TSA | Tryptic soy agar | 
| VRE | Vacomycin-resistant Enterococcus | 
| XRD | X-ray diffraction | 
| ZDC | Zinc diethyldithiocarbamate | 
| ZnO | Zinc oxide | 
| Zr | Zirconium | 
References
- Ongkunaruk, P.; Piyakarn, C. Logistics Cost Structure for Mangosteen Farmers in Thailand. Syst. Eng. Procedia 2011, 2, 40–48. [Google Scholar] [CrossRef]
- Loksupapaiboon, K.; Suvanjumrat, C. Curing analysis of rubber film on a Hand-Shaped former in the manufacturing of rubber gloves through novel OpenFOAM solver. Int. J. Heat Fluid Flow 2024, 108, 109476. [Google Scholar] [CrossRef]
- Riyajan, S. Maleated epoxidized natural rubber grafted cassava starch/silver composite coating for cloth glove: Preparation and physical properties. Ind. Crops Prod. 2024, 220, 119245. [Google Scholar] [CrossRef]
- Theiler, G.; Cano Murillo, N.; Halder, K.; Balasooriya, W.; Hausberger, A.; Kaiser, A. Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers. Int. J. Hydrog. Energy 2024, 58, 389–399. [Google Scholar] [CrossRef]
- Jha, P.K.; Chawengkijwanich, C.; Techato, K.; Limbut, W.; Luengchavanon, M. Callistemon viminalis Leaf Extract Mediated Biosynthesis of Ag, rGO-Ag-ZnO Nanomaterials for Catalytic PEM Fuel Cell Application. Trends Sci. 2022, 19, 493. [Google Scholar] [CrossRef]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Plant-extract-mediated synthesis of metal nanoparticles. J. Chem. 2021, 2021, 6562687. [Google Scholar] [CrossRef]
- Mo, F.; Zhou, Q.; He, Y. Nano–Ag: Environmental applications and perspectives. Sci. Total Environ. 2022, 829, 154644. [Google Scholar] [CrossRef]
- Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 2014, 1, 3. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Hassan, A.A.; Singh, M. Quick Insight on the Emergence of Antimicrobial Gloves; Department of Statistics (DOS), Malaysia: Putrajaya, Malaysia, 2018; pp. 60–61. [Google Scholar]
- Abaid, R.; Malik, M.; Iqbal, M.A.; Malik, M.; Shahwani, Z.; Ali, T.Z.; Morsy, K.; Capangpangan, R.Y.; Alguno, A.C.; Choi, J.R. Biosynthesizing Cassia fistula extract-mediated silver nanoparticles for MCF-7 cell lines anti-cancer assay. ACS Omega 2023, 8, 17317–17326. [Google Scholar] [CrossRef]
- Ansari, M.; Ahmed, S.; Abbasi, A.; Khan, M.T.; Subhan, M.; Bukhari, N.A.; Hatamleh, A.A.; Abdelsalam, N.R. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci. Rep. 2023, 13, 18048. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Tripathi, G.D.; Mishra, M.; Gattupalli, M.; Dashora, K. Cow dung extract mediated green synthesis of zinc oxide nanoparticles for agricultural applications. Sci. Rep. 2022, 12, 20371. [Google Scholar] [CrossRef] [PubMed]
- Alnehia, A.; Al-Sharabi, A.; Al-Odayni, A.B.; Al-Hammadi, A.H.; Al-Ostoot, F.H.; Saeed, W.S.; Abduh, N.A.Y.; Alrahlah, A. Lepidium sativum Seed Extract-Mediated Synthesis of Zinc Oxide Nanoparticles: Structural, Morphological, Optical, Hemolysis, and Antibacterial Studies. Bioinorg. Chem. Appl. 2023, 2023, 4166128. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.Y.-J.; Chang, H.; Wang, N.-Y.; Sun, F.-J.; Liu, C.-P. Clinical and molecular characteristics and risk factors for patients acquiring carbapenemase-producing and non-carbapenemase-producing carbapenem-nonsusceptible-Enterobacterales bacteremia. J. Microbiol. Immunol. Infect. 2022, 55, 1229–1238. [Google Scholar] [CrossRef]
- Borra, R.C.; Lotufo, M.A.; Gagioti, S.M.; Barros, F.d.M.; Andrade, P.M. A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral Res. 2009, 23, 255–262. [Google Scholar] [CrossRef]
- How, S.W.; Low, D.Y.S.; Leo, B.F.; Manickam, S.; Goh, B.H.; Tang, S.Y. A critical review on the current state of antimicrobial glove technologies: Advances, challenges and future prospects. J. Hosp. Infect. 2023, 137, 24–34. [Google Scholar] [CrossRef]
- Terpilowska, S.; Gluszek, S.; Czerwosz, E.; Wronka, H.; Firek, P.; Szmidt, J.; Suchanska, M.; Keczkowska, J.; Kaczmarska, B.; Kozlowski, M. Nano-Ag Particles Embedded in C-Matrix: Preparation, Properties and Application in Cell Metabolism. Materials 2022, 15, 5826. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; Lee, Y.-H.; Horst, A.; Wang, Z.; Chen, D.-R.; Sureshkumar, R.; Tang, Y.J. Comparative Eco-Toxicities of Nano-ZnO Particles under Aquatic and Aerosol Exposure Modes. Environ. Sci. Technol. 2010, 44, 1484–1489. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar] [CrossRef]
- Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Mehta, P.; Bhambra, J.; Sharma, A.; Ali, D.; Sharma, N.K.; Sharma, S.; Kumar, G.; Kumar, N. Biosynthesis of Ocimum basilicum leaf extract mediated zinc oxide nanoparticles and their cytotoxic activity. Biomass Convers. Biorefin. 2023, 13, 8373–8380. [Google Scholar] [CrossRef]
- Corsino, D.C.; Balela, M.D.L. Room temperature sintering of printer silver nanoparticle conductive ink. IOP Conf. Ser. Mater. Sci. Eng. 2017, 264, 012020. [Google Scholar] [CrossRef]
- Xue, M.; Chen, C.; Tan, Y.; Ren, Z.; Li, B.; Zhang, C. Mangosteen peel-derived porous carbon: Synthesis and its application in the sulfur cathode for lithium sulfur battery. J. Mater. Sci. 2018, 53, 11062–11077. [Google Scholar] [CrossRef]
- Anitha, D.; Ramadevi, A.; Seetharaman, R. Biosorptive removal of Nickel(II) from aqueous solution by Mangosteen shell activated carbon. Mater. Today Proc. 2021, 45, 718–722. [Google Scholar] [CrossRef]
- Gondokesumo, M.E.; Pardjianto, B.; Sumitro, S.B.; Widowati, W.; Dimyati, A. Microstructural characterization of the garcinia mangostana fruit at different maturity level. J. Nat. Remedies 2018, 18, 63–70. [Google Scholar]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int. Sch. Res. Not. 2012, 2012, 372505. [Google Scholar] [CrossRef]
- Vongsetskul, T.; Wongsomboon, P.; Sunintaboon, P.; Tantimavanich, S.; Tangboriboonrat, P. Antimicrobial nitrile gloves coated by electrospun trimethylated chitosan-loaded polyvinyl alcohol ultrafine fibers. Polym. Bull. 2015, 72, 2285–2296. [Google Scholar] [CrossRef]
- Nematollahi, M.; Jalali-Arani, A.; Golzar, K. Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference. Appl. Clay Sci. 2014, 97–98, 187–199. [Google Scholar] [CrossRef]
- Kropidłowska, P.; Jurczyk-Kowalska, M.; Irzmańska, E.; Płociński, T.; Laskowski, R. Effects of Composite Coatings Functionalized with Material Additives Applied on Textile Materials for Cut Resistant Protective Gloves. Materials 2021, 14, 6876. [Google Scholar] [CrossRef] [PubMed]
- Ikram, A.; Ma Azam, M.; Amir Hashim, M.; Fauzi, M.; Shamsul Bahri, A.; Kamaruzaman, S. Effect of Antioxidants and Latex Vulcanising Agents on the Environmental Degradation of Latex Films. J. Rubber Res. 2005, 8, 220–240. [Google Scholar]
- Ogunsona, E.; Hojabr, S.; Berry, R.; Mekonnen, T.H. Nanocellulose-triggered structural and property changes of acrylonitrile-butadiene rubber films. Int. J. Biol. Macromol. 2020, 164, 2038–2050. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.L.; Correia, C.A.; Oliveira, L.M.; Ribeiro, H.; Valera, T.S. Nano cellulose-crystals: Isolation and their promising application as reinforcement in vulcanized natural rubber compound. Ind. Crops Prod. 2024, 222, 120023. [Google Scholar] [CrossRef]
- Burns, D. Grip Characterization of Protective Gloves. Ph.D. Thesis, University of Nebraska Medical Center, Omaha, NE, USA, 2022. [Google Scholar]
- Aly, N.M.; Hamouda, T. Stab, spike and knife resistant textiles. In Advances in Healthcare and Protective Textiles; Elsevier: Amsterdam, The Netherlands, 2023; pp. 355–385. [Google Scholar]
- Zhu, J.; Liu, Q.; Wang, Y.; Zhu, K.; Guo, J.; Jin, Y.; Liu, Y. Mangosteen extract reduces the bacterial load of eggshell and improves egg quality. Heliyon 2024, 10, e35857. [Google Scholar] [CrossRef]
- Felix, L.; Mishra, B.; Khader, R.; Ganesan, N.; Mylonakis, E. In Vitro and In Vivo Bactericidal and Antibiofilm Efficacy of Alpha Mangostin Against Staphylococcus aureus Persister Cells. Front. Cell. Infect. Microbiol. 2022, 12, 898794. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules 2022, 27, 8775. [Google Scholar] [CrossRef]







| Material and Chemical Concentrations | Typical Rubber Compound Proportions by Weight (phr) | 
|---|---|
| 60% Natural rubber latex (NR) | 100.00 | 
| 10% KOH | 0.30 | 
| 20% Potassium laurate | 0.20 | 
| 50% Sulphur | 0.50 | 
| 50% ZDC | 0.75 | 
| 40% Wingstay@L | 0.75 | 
| 50% CaCO3 | 5.10 | 
| 50% ZnO | 0.40 | 
| Nanocomposites | Diameter (nm) | 
|---|---|
| Agmgt | 21.85 | 
| 16.75 | |
| 27.00 | |
| 27.73 | |
| 25.85 | |
| Average | 23.84 ± 4.08 | 
| Znmgt * | 29.80 | 
| 23.09 | |
| 27.28 | |
| 38.93 | |
| 35.84 | |
| Average | 30.99 ± 5.73 | 
| Organism | Minimum Inhibitory Concentration (MIC) of Mangosteen Extract with Nanoparticles (µg/mL) | ||
|---|---|---|---|
| Ag+Znmgt | Znmgt | Agmgt | |
| Pseudomonas aeruginosa | 80 | 80 | 40 | 
| Klebsiella pneumoniae | 160 | 320 | 80 | 
| Escherichia coli | 80 | 160 | 40 | 
| Enterococcus faecalis | 320 | >5120 | 160 | 
| Methicillin-resistant Staphylococcus aureus (MRSA) | 160 | 160 | 160 | 
| Staphylococcus aureus | 80 | 40 | 160 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luengchavanon, M.; Anancharoenwong, E.; Marthosa, S.; Pengsakul, T.; Szekely, J. Application of Antimicrobial Rubber-Coated Cotton Gloves for Mangosteen-Peel-Extract-Mediated Biosynthesis of Ag–ZnO Nanocomposites. Polymers 2025, 17, 32. https://doi.org/10.3390/polym17010032
Luengchavanon M, Anancharoenwong E, Marthosa S, Pengsakul T, Szekely J. Application of Antimicrobial Rubber-Coated Cotton Gloves for Mangosteen-Peel-Extract-Mediated Biosynthesis of Ag–ZnO Nanocomposites. Polymers. 2025; 17(1):32. https://doi.org/10.3390/polym17010032
Chicago/Turabian StyleLuengchavanon, Montri, Ekasit Anancharoenwong, Sutida Marthosa, Theerakamol Pengsakul, and Jidapa Szekely. 2025. "Application of Antimicrobial Rubber-Coated Cotton Gloves for Mangosteen-Peel-Extract-Mediated Biosynthesis of Ag–ZnO Nanocomposites" Polymers 17, no. 1: 32. https://doi.org/10.3390/polym17010032
APA StyleLuengchavanon, M., Anancharoenwong, E., Marthosa, S., Pengsakul, T., & Szekely, J. (2025). Application of Antimicrobial Rubber-Coated Cotton Gloves for Mangosteen-Peel-Extract-Mediated Biosynthesis of Ag–ZnO Nanocomposites. Polymers, 17(1), 32. https://doi.org/10.3390/polym17010032
 
        





 
                         
       