Strengthening Mechanism of Polyurea to Anti-Penetration Performance of Spherical Cell Porous Aluminum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Penetration Resistance
3.2. Fragment Penetration
4. Discussion
5. Conclusions
- (1)
- Polyurea with higher strength and toughness showed a better strengthening effect on the anti-penetration performance of the SCPA plate. The initial impact failure strength of the composite panel was about 2.2–3.0 times that of SCPA, and the average resistance force was improved by 108–218% and 125–274% for flat nose and spherical nose fragment penetration, respectively.
- (2)
- The backside coating method showed better anti-penetration resistance than the frontal side coating because of its backside support effect. The coating layer at the back surface is subjected to the combined actions of the localized indentation force caused by the fragment and the global bending of the polyurea-filled SCPA plate. But the layer rapidly converted the input energy from the SCPA plate into large stretching deformations, accompanied by phase transitions and energy dissipation.
- (3)
- The filling polyurea in SCPA increased the damage area of the metallic skeleton and formed a compression cone for the backside coating layer, leading to a significant stress diffusion effect. The plug block effect of the IPC and the backside support effect of the PU coating layer synergistically improved the anti-penetration performance of the plate.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, D.; Wang, Y.; Yang, S.; Li, Z.; Zhuang, Z.; Liu, Z. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate. Def. Technol. 2021, 19, 35–51. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Ji, C.; Liu, Q.; Gao, Z.; Zhang, K.; Zhao, C. Experimental and numerical simulation study on polyurea-coated fuel tank subjected to combined action of blast shock waves and fragments. Thin-Walled Struct. 2021, 169, 108436. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, C.; Zhao, C.; Wang, Y.; Wang, X. Non-monotonous strengthening effects of polyurea layer on polyurea-aluminum composite plate subjected to blast of charge with prefabricated fragments. Thin-Walled Struct. 2023, 192, 111194. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, C.; Wang, X.; Wang, Y.; Wu, G.; Zhu, H.; Han, Z. Strengthening and converse strengthening effects of polyurea layer on polyurea–steel composite structure subjected to combined actions of blast and fragments. Thin-Walled Struct. 2022, 178, 109527. [Google Scholar] [CrossRef]
- Bohara, R.P.; Linforth, S.; Nguyen, T.; Ghazlan, A.; Ngo, T. Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications. Eng. Struct. 2023, 276, 115377. [Google Scholar] [CrossRef]
- Wang, E.; Yao, R.; Li, Q.; Hu, X.; Sun, G. Lightweight metallic cellular materials: A systematic review on mechanical characteristics and engineering applications. Int. J. Mech. Sci. 2023, 270, 108795. [Google Scholar] [CrossRef]
- Suna, Y.; Li, Q.M. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 2018, 112, 74–115. [Google Scholar] [CrossRef]
- Dubey, R.; Jayaganthan, R.; Ruan, D.; Gupta, N.; Jones, N.; Velmurugan, R. Ballistic perforation and penetration of 6xxx-series aluminium alloys: A review. Int. J. Impact Eng. 2023, 172, 104426. [Google Scholar] [CrossRef]
- Arslan, K.; Gunes, R. Penetration mechanics of ceramic/metal functionally graded plates under ballistic impact: An experimental perspective. Compos. Struct. 2024, 331, 117897. [Google Scholar] [CrossRef]
- Zou, G.; Wu, S.; Yan, A.; Chang, Z.; Li, Y.; Zhang, Z. Penetration resistance of ceramic/PUE/GFRP multi-layered composite structure. Compos. Struct. 2023, 311, 116822. [Google Scholar] [CrossRef]
- Serubibi, A.; Hazell, P.J.; Escobedo, J.P.; Wang, H.; Oromiehie, E.; Prusty, G.B.; Phillips, A.W.; John, N.A.S. Fibre-metal laminate structures: High-velocity impact, penetration, and blast loading—A review. Compos. Part A Appl. Sci. Manuf. 2023, 173, 2107674. [Google Scholar] [CrossRef]
- Tripathi, M.; Parthasarathy, S.; Kumar, D.; Chandel, P.; Sharma, P.; Roy, P.K. Strain rate sensitivity of polyurea coatings: Viscous and elastic contributions. Polym. Test. 2020, 86, 106488. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Wang, B.; Zhang, B.; Zheng, Q.; Zhou, J.-N.; Jin, F.-N.; Fan, H.-L. Polyurea coating for foamed concrete panel: An efficient way to resist explosion. Def. Technol. 2019, 16, 136–149. [Google Scholar] [CrossRef]
- Iqbal, N.; Sharma, P.K.; Kumar, D.; Roy, P.K. Protective polyurea coatings for enhanced blast survivability of concrete. Constr. Build. Mater. 2018, 175, 682–690. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Ji, C.; Gao, Z.; Jiang, T.; Zhao, C.; Liu, Y. Anti-blast properties of 6063-T5 aluminum alloy circular tubes coated with polyurea elastomer: Experiments and numerical simulations. Thin-Walled Struct. 2021, 164, 107842. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Wang, Y.; Wu, G.; Cao, Y.; Ji, C. Dynamic responses of aluminum alloy plates coated with polyurea elastomer subjected to repeated blast loads: Experimental and numerical investigation. Thin-Walled Struct. 2023, 189, 110912. [Google Scholar] [CrossRef]
- Samiee, A.; Amirkhizi, A.V.; Nemat-Nasser, S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads. Mech. Mater. 2013, 64, 1–10. [Google Scholar] [CrossRef]
- Si, P.; Liu, Y.; Yan, J.; Bai, F.; Huang, F. Ballistic Performance of Polyurea-Reinforced Ceramic/Metal Armor Subjected to Projectile Impact. Materials 2022, 15, 3918. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Liu, Y.; Yan, J.; Bai, F.; Shi, Z.; Huang, F. Effect of polyurea layer on ballistic behavior of ceramic/metal armor. Structures 2023, 48, 1856–1867. [Google Scholar] [CrossRef]
- Bijanzad, A.; Abdulwahab, M.; Lazoglu, I.; Ensarioglu, C.; Cakir, M.C. Effect of polyurea coating on the ductility of aluminum foam. Mater. Today Commun. 2022, 31, 103334. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Huang, X. Experimental study on the impact response of the polyurea-coated 3D auxetic lattice sandwich panels subjected to air explosion. Compos. Struct. 2023, 323, 117500. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Zu, X.; Wang, H.; Wang, X.; Han, Q.; Wen, B. Research on vibration and impact-resistant performances of fiber reinforced resin matrix composite plates with polyurea coating. Sci. Sin. Technol. 2021, 51, 959–969. [Google Scholar] [CrossRef]
- Liang, M.; Zhou, M.; Li, X.; Lin, Y.; Lu, F. Synergistic effect of combined blast loads on UHMWPE fiber mesh reinforced polyurea composites. Int. J. Impact Eng. 2024, 183, 104804. [Google Scholar] [CrossRef]
- Ao, W.; Zhou, Q.; Xia, Y. Impact resistance and damage mechanism of polyurea coated CFRP laminates under quasi-static indentation and low velocity impact. Thin-Walled Struct. 2023, 193, 111258. [Google Scholar] [CrossRef]
- Veysset, D.; Hsieh, A.J.; Kooi, S.E.; Nelson, K.A. Molecular influence in high-strain-rate microparticle impact response of poly(urethane urea) elastomers. Polymer 2017, 123, 30–38. [Google Scholar] [CrossRef]
- Hsieh, A.J.; Veysset, D.; Miranda, D.F.; Kooi, S.E.; Runt, J.; Nelson, K.A. Molecular influence in the glass/polymer interface design: The role of segmental dynamics. Polymer 2018, 146, 222–229. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.-C.M.; Veysset, D.; Kooi, S.E.; Hu, W.; Swager, T.M.; Nelson, K.A.; Hsieh, A.J. Molecular Dependencies of Dynamic Stiffening and Strengthening through High Strain Rate Microparticle Impact of Polyurethane and Polyurea Elastomers. Appl. Phys. Lett. 2019, 115, 093701. [Google Scholar] [CrossRef]
- Mohotti, D.; Ngo, T.; Raman, S.N.; Mendis, P. Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact. Mater. Des. 2015, 82, 1–17. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wang, Y.; Ji, C.; Zhao, C. Bioinspired nacre-like steel-polyurea composite plate subjected to projectile impact. Mater. Des. 2022, 224, 111371. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Wang, X.; Ji, C.; Zhao, C.-X.; Liu, P.-L.; Meng, L.; Zhang, K.; Jiang, T. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact. Def. Technol. 2021, 17, 1496–1513. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Wang, S.-P.; Lin, X.; Cui, P.; Zhang, S. Numerical simulation on the anti-penetration performance of polyurea-core Weldox 460 E steel sandwich plates. Compos. Struct. 2020, 236, 111852. [Google Scholar] [CrossRef]
- Xia, Y.; Shi, Z.; Zhou, Q.; Ao, W. Numerical investigation on polyurea coated aluminum plate subjected to low velocity impact. Int. J. Impact Eng. 2023, 177, 104516. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Wei, J.; Wang, W. Study on the impact resistance of polyurea-steel composite plates to low velocity impact. Int. J. Impact Eng. 2019, 133, 103357. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Huang, Z.; Yang, C.; Xudong, Z. Polyurea-coated ceramic-aluminum composite plates subjected to low velocity large fragment impact. Mater. Today Commun. 2022, 33, 104501. [Google Scholar] [CrossRef]
- Chu, D.; Li, Z.; Yao, K.; Wang, Y.; Tian, R.; Zhuang, Z.; Liu, Z. Studying the strengthening mechanism and thickness effect of elastomer coating on the ballistic-resistance of the polyurea-coated steel plate. Int. J. Impact Eng. 2022, 163, 104181. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, B.; Ma, L.; Wu, L.; Pan, S.; Yang, J. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos. Struct. 2014, 108, 304–310. [Google Scholar] [CrossRef]
- Kao, Y.T.; Amin, A.R.; Payne, N.; Wang, J.; Tai, B.L. Low-velocity impact response of 3D-printed lattice structure with foam reinforcement. Compos. Struct. 2018, 192, 93–100. [Google Scholar] [CrossRef]
- Clarke, D.R. Interpenetrating phase composites. J. Am. Ceram. Soc. 1992, 75, 739–759. [Google Scholar] [CrossRef]
- Ramirez, B.; Misra, U.; Gupta, V. Viscoelastic foam-filled lattice for high energy absorption. Mech. Mater. 2018, 127, 39–47. [Google Scholar] [CrossRef]
- Liu, S.; Li, A.; He, S.; Xuan, P. Cyclic compression behavior and energy dissipation of aluminum foam–polyurethane interpenetrating phase composites. Compos. Part A Appl. Sci. Manuf. 2015, 78, 35–41. [Google Scholar] [CrossRef]
- Liu, S.; Li, A. Hysteretic friction behavior of aluminum foam/polyurethane interpenetrating phase composites. Compos. Struct. 2018, 203, 18–29. [Google Scholar] [CrossRef]
- Liu, S.; Li, A.; Xuan, P. Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression. Compos. Part A Appl. Sci. Manuf. 2018, 116, 87–97. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polym. Test. 2021, 93, 106917. [Google Scholar] [CrossRef]
- Bao, H.; Li, A. Study on Quasi-Static Uniaxial Compression Properties and Constitutive Equation of Spherical Cell Porous Aluminum-Polyurethane Composites. Materials 2018, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, B.; Gao, Y.; Guan, X.; Xu, P. Deformation mechanisms of spherical cell porous aluminum under quasi-static compression. Scr. Mater. 2018, 142, 32–35. [Google Scholar] [CrossRef]
- Amini, M.; Isaacs, J.; Nemat-Nasser, S. Experimental investigation of response of monolithic and bilayer plates to impulsive loads. Int. J. Impact Eng. 2010, 37, 82–89. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zhao, T.; Cao, X.; Jiang, Y.; Xiao, D.; Fang, D. An experimental study on dynamic response of polyurea coated metal plates under intense underwater impulsive loading. Int. J. Impact Eng. 2019, 133, 103361. [Google Scholar] [CrossRef]
- Amini, M.; Amirkhizi, A.; Nemat-Nasser, S. Numerical modeling of response of monolithic and bilayer plates to impulsive loads. Int. J. Impact Eng. 2010, 37, 90–102. [Google Scholar] [CrossRef]
- Wang, X.; Ji, C.; Wu, G.; Wang, Y.; Zhu, H. Damage response of high elastic polyurea coated liquid-filled tank subjected to close-in blast induced by charge with prefabricated fragments. Int. J. Impact Eng. 2022, 167, 104260. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wang, Y.; Ji, C.; Zhao, C.; Gao, Y.; Tao, C. Investigation into the ballistic characterization of polyurea-coated spliced-shaped multilayer ceramic plates. Int. J. Impact Eng. 2024, 185, 104867. [Google Scholar] [CrossRef]
Polyurea | Solid Content | Density (kg/m3) | Tensile Strength (MPa) | Tear Strength (kN/m) | Elongation |
---|---|---|---|---|---|
APC-20 | ≥90 | 1050 | 15 | 85 | ≥350 |
APC-30 | ≥96 | 1050 | 22 | 100 | ≥300 |
APC-40 | ≥96 | 1070 | 32 | 110 | ≥300 |
SCPA | PSCPA-I | PSCPA-II | PSCPA-III | |
---|---|---|---|---|
FN | 7.14 ± 0.6 | 14.83 ± 1.3 | 19.77 ± 1.6 | 22.68 ± 1.7 |
SN | 5.48 ± 0.7 | 12.36 ± 1.5 | 15.41 ± 1.8 | 20.05 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Guo, Y.; Cui, Y.; Yang, X. Strengthening Mechanism of Polyurea to Anti-Penetration Performance of Spherical Cell Porous Aluminum. Polymers 2024, 16, 1249. https://doi.org/10.3390/polym16091249
Fan Z, Guo Y, Cui Y, Yang X. Strengthening Mechanism of Polyurea to Anti-Penetration Performance of Spherical Cell Porous Aluminum. Polymers. 2024; 16(9):1249. https://doi.org/10.3390/polym16091249
Chicago/Turabian StyleFan, Zhiqiang, Yujian Guo, Yongxin Cui, and Xiaopeng Yang. 2024. "Strengthening Mechanism of Polyurea to Anti-Penetration Performance of Spherical Cell Porous Aluminum" Polymers 16, no. 9: 1249. https://doi.org/10.3390/polym16091249
APA StyleFan, Z., Guo, Y., Cui, Y., & Yang, X. (2024). Strengthening Mechanism of Polyurea to Anti-Penetration Performance of Spherical Cell Porous Aluminum. Polymers, 16(9), 1249. https://doi.org/10.3390/polym16091249