Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Materials
- Preparation of tooling. Clean the molding fixture with ethyl acetate until the surface is free of oil stains, rust, and other pollutants. Brush the mold release agent 2–3 times horizontally and cross on the surface of the mold cavity.
- Material preparation. Place pre-impregnated materials in a dust-free room at 23 ± 5 °C for thawing 12 h in advance; according to the size and thickness of the laminated board, use a cutting machine to cut the prepreg. During the cutting process, be careful to avoid contaminating the prepreg. Lay the prepreg into the mold cavity of the molding fixture according to the laying angle of the laminated board.
- Equipment preparation. Set the 500T hot press machine to 200 °C for early heating; only after the heating plate temperature reaches 200 °C can the specimen be heated and cured.
- Curing of laminated boards. The curing temperature is 160 ± 10 °C, the pressure is 5–6 MPa, and the pressurization time is 30–40 min. Arrange 2–4 thermocouples at the edge of the molding fixture to monitor the fixture temperature. Calculate the pressurization time after the thermocouple temperature reaches 160 °C.
- Sample processing. After cooling the laminated board to room temperature, open the mold. After the mold is opened, use a CNC ultra-high pressure water cutting machine to roughly process rectangular test pieces. Then, bond and fix glass fiber reinforcement plates at both ends of the test pieces, and carry out precision machining again using a CNC ultra-high pressure water cutting machine.
2.2. Quasi-Static Tensile Test of Composite Materials
3. Results and Discussion
3.1. Tension Responses of UHMWPE Fiber-reinforced Composites
3.2. Constitutive Model of Nonlinear Viscoelastic Responses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhamu, A.; Wingert, M.; Jana, S.; Zhong, W.; Stone, J.J. Treatment of functionalized graphitic nanofibers (GNFs) and the adhesion of GNFs-reinforced-epoxy with ultra high molecular weight polyethylene fiber. Compos. Part A Appl. Sci. Manuf. 2007, 38, 699–709. [Google Scholar] [CrossRef]
- Lin, S.P.; Han, J.L.; Yeh, J.T.; Chang, F.C.; Hsieh, K.H. Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks. Eur. Polym. J. 2007, 43, 996–1008. [Google Scholar] [CrossRef]
- Safyari, M.; Rauscher, A.; Ucsnik, S.; Moshtaghi, M. Hydrogen trapping and permeability in carbon fiber reinforced aluminum alloys. Int. J. Hydrogen Energy 2024, 50, 199–210. [Google Scholar] [CrossRef]
- Cheeseman, B.A.; Bogetti, T.A. Ballistic impact into fabric and compliant composite laminates. Compos. Struct. 2003, 61, 161–173. [Google Scholar] [CrossRef]
- Chhetri, S.; Bougherara, H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Vadivel, H.S.; Al-Maqdasi, Z.; Pupure, L.; Joffe, R.; Kalin, M.; Emami, N. Time-dependent properties of newly developed multiscale UHMWPE composites. Polym. Test. 2022, 105, 107400. [Google Scholar] [CrossRef]
- Bai, L.; Cao, C.; Xiao, L.; Cheng, H.; Liu, Z.; Sun, X.; Xiao, Q.; Yang, S.; Lin, G.; Qian, Q.; et al. Structure insight into the interfacial effect of fiber-low density polyethylene composites by the combination of experiment and finite element simulation. Polym. Test. 2022, 111, 107597. [Google Scholar] [CrossRef]
- Wu, M.; Jia, L.; Chen, Z.; Wang, J.; Yan, R. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification. Compos. Struct. 2022, 292, 115663. [Google Scholar] [CrossRef]
- Chukov, D.I.; Zherebtsov, D.D.; Olifirov, L.K.; Torokhov, V.G.; Maksimkin, A.V. Comparison between self-reinforced composites based on ultra-high molecular weight polyethylene fibers and isotropic UHMWPE. Mendeleev Commun. 2020, 30, 49–51. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Parker, J.C.; Ling, Y.T.T.; Ramesh, K.T. Effect of microstructure on the dynamic behavior of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) composites. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106833. [Google Scholar] [CrossRef]
- Mo, G.; Ma, Q.; Jin, Y.; Yan, W.; Li, Z.; Wu, Z. Delamination process in cross-ply UHMWPE laminates under ballistic penetration. Def. Technol. 2021, 17, 278–286. [Google Scholar] [CrossRef]
- Langston, T. An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites. Compos. Struct. 2017, 179, 245–257. [Google Scholar] [CrossRef]
- Attwood, J.P.; Russell, B.P.; Wadley, H.N.G.; Deshpande, V.S. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams. Int. J. Impact Eng. 2016, 93, 153–165. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Ryan, S.; Orifici, A.C.; Cimpoeru, S.J. A penetration model for semi-infinite composite targets. Int. J. Impact Eng. 2020, 137, 103438. [Google Scholar] [CrossRef]
- Grujicic, M.; Arakere, G.; He, T.; Bell, W.C.; Cheeseman, B.A.; Yen, C.F.; Scott, B. A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites. Mater. Sci. Eng. A 2008, 498, 231–241. [Google Scholar] [CrossRef]
- He, Y.; Jiao, Y.; Zhou, Q.; Jia, N.; Chen, L.; Wan, X. Tensile behavior of ultra-high molecular weight polyethylene reinforced thermoplastic resin matrix composites for ballistic application. Acta Mater. Compos. Sin. 2023, 40, 119–130. [Google Scholar]
- Karthikeyan, K.; Russell, B.P. Polyethylene ballistic laminates: Failure mechanics and interface effect. Mater. Des. 2014, 63, 115–125. [Google Scholar] [CrossRef]
- Masta, M.R.O.; Crayton, D.H.; Deshpande, V.S.; Wadley, H.N.G. Mechanisms of penetration in polyethylene reinforced cross-ply laminates. Int. J. Impact Eng. 2015, 86, 249–264. [Google Scholar]
- Guo, G.; Alam, S.; Peel, L.D. An investigation of deformation and failure mechanisms of fiber-reinforced composites in layered composite armor. Compos. Struct. 2022, 281, 115125. [Google Scholar] [CrossRef]
- Meshi, I.; Amarilio, I.; Benes, D.; Haj-Ali, R. Delamination behavior of UHMWPE soft layered composites. Compos. Part B Eng. 2016, 98, 166–175. [Google Scholar] [CrossRef]
- Bogetti, T.A.; Walter, M.; Staniszewski, J.; Cline, J. Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates. Compos. Part A Appl. Sci. Manuf. 2017, 98, 105–115. [Google Scholar] [CrossRef]
- Wang, K.; Shen, L.; Lu, R.; Yang, Z.; Qin, Z. Remarkably improved interfacial adhesion of UHMWPE fibers reinforced composite by constructing a three-dimensional stacked nanoparticles structure at interphase. J. Ind. Eng. Chem. 2022, 110, 552–563. [Google Scholar] [CrossRef]
- Kartikeya, K.; Chouhan, H.; Ahmed, A.; Bhatnagar, N. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites. Polym. Test. 2020, 82, 106293. [Google Scholar] [CrossRef]
- Russell, B.P.; Karthikeyan, K.; Deshpande, V.S.; Fleck, N.A. The high strain rate response of Ultra High Molecular-weight Polyethylene: From fibre to laminate. Int. J. Impact Eng. 2013, 60, 1–9. [Google Scholar] [CrossRef]
- Levi-Sasson, A.; Meshi, I.; Mustacchi, S.; Amarilio, I.; Benes, D.; Favorsky, V.; Eliasy, R.; Aboudi, J.; Haj-Ali, R. Experimental determination of linear and nonlinear mechanical properties of laminated soft composite material system. Compos. Part B Eng. 2014, 57, 96–104. [Google Scholar] [CrossRef]
- Lässig, T.; Nguyen, L.; May, M.; Riedel, W.; Heisserer, U.; van der Werff, H.; Hiermaier, S. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations. Int. J. Impact Eng. 2015, 75, 110–122. [Google Scholar] [CrossRef]
- He, Y.; Jiao, Y.; Zhou, Q.; Chen, L. Research progress on ballistic response of advanced composite for ballistic protection. Acta Mater. Compos. Sin. 2021, 38, 1331–1347. [Google Scholar]
- Kromm, F.X.; Lorriot, T.; Coutand, B.; Harry, R.; Quenisset, J.M. Tensile and creep properties of ultra high molecular weight PE fibres. Polym. Test. 2003, 22, 463–470. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, K.; Fang, Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates. Polym. Test. 2017, 63, 54–64. [Google Scholar] [CrossRef]
- Lässig, T.R.; May, M.; Heisserer, U.; Riedel, W.; Bagusat, F.; van der Werff, H.; Hiermaier, S.J. Effect of consolidation pressure on the impact behavior of UHMWPE composites. Compos. Part B Eng. 2018, 147, 47–55. [Google Scholar] [CrossRef]
- Chouhan, H.; Asija, N.; Ahmed, A.; Kartikeya; Bhatnagar, N. Effect of Moisture on High Strain Rate Performance of UHMWPE Fiber Based Composite. Procedia Struct. Integr. 2019, 14, 830–838. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 527-4:1997; Plastics. Determination of Tensile Pproperties. Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. International Organization for Standardization: Geneva, Switzerland, 1997.
- Chang, B.; Wang, X.; Long, Z.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. Constitutive modeling for the accurate characterization of the tension behavior of PEEK under small strain. Polym. Test. 2018, 69, 514–521. [Google Scholar] [CrossRef]
- Cao, K.; Wang, Y.; Wang, Y. Effects of strain rate and temperature on the tension behavior of polycarbonate. Mater. Des. 2012, 38, 53–58. [Google Scholar] [CrossRef]
Material Grade | Fiber Breaking Strength (cN/dtex) | Fiber Initial Modulus (cN/dtex) | Thickness (mm) | Matrix Content | Areal Density (g/m2) |
---|---|---|---|---|---|
AT40H120 | ≥34 | ≥1350 | 0.12 | 17% | 120 |
T (°C) | E0 (MPa) | C1 (MPa) | C2 (MPa) | C3 (MPa) | E1 (MPa) | θ0 (s) | β |
---|---|---|---|---|---|---|---|
−20 | 7491.67 | −50,180.7 | 384,223.20 | −959,019.00 | 1959.92 | 3.43 | 0.25 |
20 | 4036.51 | −9683.33 | 20,755.71 | −17,545.00 | 1002.55 | 13.28 | 0.25 |
50 | 1407.32 | 14,444.36 | −58,759.32 | 61,157.00 | 1001.54 | 19.75 | 0.25 |
80 | 20.15 | 10,566.20 | −34,916.43 | 26,079.00 | 2082.43 | 38.03 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, C.; Xu, J.; Tian, L.; Zhang, C. Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites. Polymers 2024, 16, 1250. https://doi.org/10.3390/polym16091250
Yi C, Xu J, Tian L, Zhang C. Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites. Polymers. 2024; 16(9):1250. https://doi.org/10.3390/polym16091250
Chicago/Turabian StyleYi, Chenhong, Jianhui Xu, Lizhi Tian, and Chun Zhang. 2024. "Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites" Polymers 16, no. 9: 1250. https://doi.org/10.3390/polym16091250
APA StyleYi, C., Xu, J., Tian, L., & Zhang, C. (2024). Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites. Polymers, 16(9), 1250. https://doi.org/10.3390/polym16091250