Cellulose Nitrates-Blended Composites from Bacterial and Plant-Based Celluloses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates for the Study
2.1.1. Preparing Cellulose Samples for Nitration
2.1.2. Quality Attributes of Cellulose Samples
2.2. Nitration of Cellulose Samples
2.3. Structural Study: TGA/DTA Analyses of Cellulose Samples and CNs
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CN | cellulose nitrate |
BC | bacterial cellulose |
OHC | oat-hull cellulose |
MA | sulfuric–nitric mixed acids |
NA + MC | concentrated nitric acid in the presence of methylene chloride |
CN BC | cellulose nitrate from bacterial cellulose |
CN OHC | cellulose nitrate from oat-hull cellulose |
CN MA | cellulose nitrate by nitration with sulfuric–nitric mixed acids |
CN NA + MC | cellulose nitrate by nitration with concentrated nitric acid in the presence of methylene chloride |
BC/OHC | blended bacterial /oat-hull celluloses |
CN BC/OHC | cellulose nitrate from blended bacterial/oat-hull celluloses |
CN BC MA | cellulose nitrate from bacterial cellulose nitrated with sulfuric–nitric mixed acids |
CN BC NA + MC | cellulose nitrate from bacterial cellulose nitrated with concentrated nitric acid in the presence of methylene chloride |
CN OHC MA | cellulose nitrate from oat-hull cellulose nitrated with sulfuric–nitric mixed acids |
CN OHC NA + MC | cellulose nitrate from oat-hull cellulose nitrated with concentrated nitric acid in the presence of methylene chloride |
DP | degree of polymerization |
References
- Sabatini, J.J.; Johnson, E.C. A short review of nitric esters and their role in energetic materials. ACS Omega 2021, 6, 11813–11821. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Alam, N.; Li, M.; Xie, M.; Ni, Y. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohydr. Polym. 2021, 268, 118259. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xie, M.Y.; Li, M.; Cao, L.; Feng, S.; Li, Z.; Xu, F. Nitrocellulose membrane for paper-based biosensor. Appl. Mater. Today 2022, 26, 101305. [Google Scholar] [CrossRef]
- Misenan, M.S.M.; Norrrahim, M.N.F.; Saad, M.M.; Shaffie, A.H.; Zulkipli, N.A.; Farabi, M.A. 18-Recent advances in nitrocellulose-based composites. In Woodhead Publishing Series in Composites Science and Engineering, Synthetic and Natural Nanofillers in Polymer Composites; Nurazzi, N.M., Ilyas, R.A., Sapuan, S.M., Khalina, A., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 399–415. [Google Scholar] [CrossRef]
- Duan, X.; Li, Z.; Wu, B.; Shen, J.; Pei, C. Preparation of Nitrocellulose by Homogeneous Esterification of Cellulose Based on Ionic Liquids. Propellants Explos. Pyrotech. 2023, 48, e202200186. [Google Scholar] [CrossRef]
- Morris, E.; Pulham, C.R.; Morrison, C.A. Structure and properties of nitrocellulose: Approaching 200 years of research. RSC Adv. 2023, 13, 32321–32333. [Google Scholar] [CrossRef]
- Saito, Y.; Okada, K.; Endo, T.; Sakakibara, K. Highly surface-selective nitration of cellulose nanofibers under mildly acidic reaction conditions. Cellulose 2023, 30, 10083–10095. [Google Scholar] [CrossRef]
- Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 2016, 124, 1485–1496. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V.; Sakovich, G.V. Cellulose nitrates from intermediate flax straw. Russ. Chem. Bull. 2016, 65, 2920–2924. [Google Scholar] [CrossRef]
- Korchagina, A.A. Synthesis of cellulose nitrates from Miscanthus × giganteus var. KAMIS cellulose obtained under pilot production conditions. Proc. Univ. Appl. Chem. Biotechnol. 2023, 13, 392–401. (In Russian) [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Korchagina, A.A.; Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers 2023, 16, 42. [Google Scholar] [CrossRef]
- Najib, M.; Ghani, A.; Ibrahim, F.; Abu, M.; Amir, U.; Ibrahim, R.; Adnan, S.; Zu, M.; Yahya, A. The processing of nitrocellulose from Rhizophora, Palm Oil Bunches (EFB) and kenaf fibres as a Propellant Grade. Int. J. Eng. Technol. 2018, 7, 59–65. [Google Scholar]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Chelouche, S.; Derradji, M.; Bessa, W.; Mezroua, A. A promising energetic polymer from Posidonia oceanica brown algae: Synthesis, characterization, and kinetic modeling. Macromol. Chem. Phys. 2019, 220, 1900358. [Google Scholar] [CrossRef]
- Jesuet, M.S.G.; Musa, N.M.; Idris, N.M.; Musa, D.N.S.; Bakansing, S.M. Properties of nitrocellulose from Acacia mangium. J. Phys. Conf. Ser. 2019, 1358, 012035. [Google Scholar] [CrossRef]
- Korchagina, A.A.; Budaeva, V.V.; Kukhlenko, A.A. Esterification of oat-hull cellulose. Russ. Chem. Bull. 2019, 68, 1282–1288. [Google Scholar] [CrossRef]
- Muvhiiwa, R.; Mawere, E.; Moyo, L.B.; Tshuma, L. Utilization of cellulose in tobacco (Nicotiana tobacum) stalks for nitrocellulose production. Heliyon 2021, 7, e07598. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, A.C.; Bajestani, S.Z.; Bajestan, A.S. Comparative techno-economic assessment of production of microcrystalline cellulose, microcrystalline nitrocellulose, and solid biofuel for biorefinery of pistachio shell. Bioresour. Technol. Rep. 2023, 24, 101673. [Google Scholar] [CrossRef]
- Rizkiansyah, R.R.; Mardiyati, Y.; Hariyanto, A.; Dirgantara, T. Arabica Coffee Pulp Cellulose: Isolation, Morphology, and its Capabilities to be Modified into Cellulose Nitrate. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 77, p. 01001. [Google Scholar] [CrossRef]
- Duan, X.; Li, Z.; Shi, X.; Pei, C. Giant panda feces: Potential raw material in preparation of nitrocellulose for propellants. Cellulose 2023, 30, 3127–3140. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapotke, T.M.; Abdelaziz, A.; Bekhouche, S.; Boukeciat, H.; Sahnoun, N. Making progress towards promising energetic cellulosic microcrystals developed from alternative lignocellulosic biomasses. J. Energetic Mater. 2024, 42, 97–122. [Google Scholar] [CrossRef]
- Garland, N.T.; McLamore, E.S.; Gomes, C.; Marrow, E.A.; Daniele, M.A.; Walper, S.; Medintz, I.L.; Claussen, J.C. Synthesis and applications of cellulose nanohybrid materials. In Hybrid Polymer Composite Material; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Yamamoto, H.; Horii, F.; Hirai, A. Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 2006, 13, 327–342. [Google Scholar] [CrossRef]
- Sun, D.-P.; Ma, B.; Zhu, C.-L.; Liu, C.-S.; Yang, J.-Z. Novel nitrocellulose made from bacterial cellulose. J. Energetic Mater. 2010, 28, 85–97. [Google Scholar] [CrossRef]
- Luo, Q.; Zhu, J.; Li, Z.; Duan, X.; Pei, C.; Mao, C. The solution characteristics of nitrated bacterial cellulose in acetone. New J. Chem. 2018, 42, 18252–18258. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Synthesis of bacterial cellulose nitrates. Russ. Chem. Bull. 2019, 68, 2130–2133. [Google Scholar] [CrossRef]
- Budaeva, V.V.; Gismatulina, Y.A.; Mironova, G.F.; Skiba, E.A.; Gladysheva, E.K.; Kashcheyeva, E.I.; Baibakova, O.V.; Korchagina, A.A.; Shavyrkina, N.A.; Golubev, D.S.; et al. Bacterial nanocellulose nitrates. Nanomaterials 2019, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, Q.; Zhu, J.; Li, Z.; Li, C.; Pei, C. The preparation and rheological properties of novel energetic composites TEGDN/NBC. Propellants Explos. Pyrotech. 2020, 45, 101–110. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Q.; Zhu, J.; Li, Z.; Zhao, J.; Pei, C. Development rheological and thermal properties of a novel propellant RDX/TEGDN/NBC. SN Appl. Sci. 2020, 2, 2041. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Dong, J.; Li, B.; Shen, J.; Chen, L.; He, W. Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. J. Mater. Res. Technol. 2020, 9, 15094–15101. [Google Scholar] [CrossRef]
- Jamal, S.H.; Roslan, N.J.; Shah, N.A.A.; Noor, S.A.M.; Ong, K.K.; Yunus, W.M.Z.W. Preparation and characterization of nitrocellulose from bacterial cellulose for propellant uses. Mater. Today Proc. 2020, 29, 185–189. [Google Scholar] [CrossRef]
- Chen, L.; Cao, X.; Gao, J.; Wang, Y.; Zhang, Y.; Liu, J.; He, W. Synthesis of 3D Porous Network Nanostructure of Nitrated Bacterial Cellulose Gel with Eminent Heat-Release, Thermal Decomposition Behaviour and Mechanism. Propellants Explos. Pyrotech. 2021, 46, 1292–1303. [Google Scholar] [CrossRef]
- Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y.; et al. Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. [Google Scholar] [CrossRef]
- Jori Roslan, N.; Jamal, S.H.; Ong, K.K.; Wan Yunus, W.M.Z. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. Solid State Phenom. 2021, 317, 312–319. [Google Scholar] [CrossRef]
- Jamal, S.H.; Roslan, N.J.; Ahmad Shah, N.A.; Mohd Noor, S.A.; Khim, O.K.; Yunus, W.M.Z.W. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. Solid State Phenom. 2021, 317, 305–311. [Google Scholar] [CrossRef]
- Chen, L.; Nan, F.; Li, Q.; Zhang, J.; Jin, G.; Wang, M.; Cao, X.; Liu, J.; He, W. Sol–gel synthesis of insensitive nitrated bacterial cellulose/cyclotrimethylenetrinitramine nano-energetic composites and its thermal decomposition property. Cellulose 2022, 29, 7331–7351. [Google Scholar] [CrossRef]
- Gismatulina, Y.A. Promising Energetic Polymers from Nanostructured Bacterial Cellulose. Polymers 2023, 15, 2213. [Google Scholar] [CrossRef] [PubMed]
- Roslan, N.J.; Jamal, S.H.; Rashid, J.I.A.; Norrrahim, M.N.F.; Khim, O.K.; Yunus, W.M.Z.W. Response surface methodology for optimization of nitrocellulose preparation from nata de coco bacterial cellulose for propellant formulation. Heliyon 2024, 10, e25993. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Torabi, M.; Lu, J.; Shen, R.; Zhang, K. Nanostructured energetic composites: Synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 2014, 6, 3058–3074. [Google Scholar] [CrossRef] [PubMed]
- Mattar, H.; Baz, Z.; Saleh, A.; Shalaby, A.S.; Azzazy, A.E.; Salah, H.; Ismail, I. Nitrocellulose: Structure, synthesis, characterization, and applications. Water Energy Food Environ. J. 2020, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Fu, L.; Song, Z.; Man, M.; Yuan, H.; Zheng, X.; Chen, L. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells. Analyst 2021, 146, 5255–5263. [Google Scholar] [CrossRef] [PubMed]
- Urbina, L.; Corcuera, M.A.; Gabilondo, N.; Eceiza, A.; Retegi, A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Pandit, A.; Kumar, R. A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ. 2021, 29, 2738–2755. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Hamouche, M.A.; Abdelaziz, A.; Boukeciat, H.; Chentir, I.; Touidjine, S.; Klapötke, T.M. Elucidating the characteristics of a promising nitrate ester polysaccharide derived from shrimp shells and its blends with cellulose nitrate. Cellulose 2023, 30, 4941–4955. [Google Scholar] [CrossRef]
- Duan, X.; Shi, X.; Li, Z.; Pei, C. Preparation of nitrocellulose/nitrochitosan composite aerogel with mesoporous and significant thermal behavior on the basis of precursors synthesized by homogeneous reaction. Cellulose 2024, 31, 1641–1658. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef]
- Liu, J. Nitrate Esters Chemistry and Technology; Springer: Singapore, 2019; pp. 1–683. [Google Scholar]
- Gladysheva, E.K.; Skiba, E.A.; Zolotukhin, V.N.; Sakovich, G.V. Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii Sa-12. Appl. Biochem. Microbiol. 2018, 54, 179–187. [Google Scholar] [CrossRef]
- TAPPI. Alpha-, Beta-, and Gamma-Cellulose in Pulp, Test Method T 203 cm-22; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- TAPPI. Acid-insoluble lignin in wood and pulp, Test method T. 222 om-83. In Test Methods, 1998–1999; TAPPI Press: Atlanta, GA, USA, 1999. [Google Scholar]
- TAPPI. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. Test Method T. 211 om-02; TAPPI: Peachtree Corners, GA, USA, 2002. [Google Scholar]
- Hallac, B.B.; Ragauskas, A.J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefin. 2011, 5, 215–225. [Google Scholar] [CrossRef]
- López-López, M.; Alegre, J.M.R.; García-Ruiz, C.; Torre, M. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography. Anal. Chim. Acta. 2011, 685, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, Z.; Wang, W.; Li, L.; Lv, Y.; Sun, J. System and method for simultaneous measurement of nitrogen content and uniformity of nitration of nitrocellulose. Cent. Eur. J. Energ. Mater. 2018, 15, 554–571. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Saito, Y.; Akiyoshi, M.; Endo, T.; Matsunaga, T. Preparation and characterization of nitrocellulose nanofiber. Propellants Explos. Pyrotech. 2021, 46, 962–968. [Google Scholar] [CrossRef]
- Sullivan, F.; Simon, L.; Ioannidis, N.; Patel, S.; Ophir, Z.; Gogos, C.; Jaffe, M.; Tirmizi, S.; Bonnett, P.; Abbate, P. Nitration kinetics of cellulose fibers derived from wood pulp in mixed acids. Ind. Eng. Chem. Res. 2018, 57, 1883–1893. [Google Scholar] [CrossRef]
- Nikolsky, S.N.; Zlenko, D.V.; Melnikov, V.P.; Stovbun, S.V. The fibrils untwisting limits the rate of cellulose nitration process. Carbohydr. Polym. 2019, 204, 232–237. [Google Scholar] [CrossRef]
- Cao, X.; Nan, F.; Zheng, Y.; Chen, L.; He, W. Hygroscopicity of nitrocellulose with different nitrogen content. Propellants Explos. Pyrotech. 2024, 49, e202300035. [Google Scholar] [CrossRef]
- Chai, H.; Duan, Q.; Cao, H.; Li, M.; Sun, J. Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel 2020, 264, 116853. [Google Scholar] [CrossRef]
- Pacheco, G.; Nogueira, C.R.; Meneguin, A.B.; Trovatti, E.; Silva, M.C.C.; Machado, R.T.A.; Ribeiro, S.J.L.; Filho, E.C.S.; Baruda, H.S. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crops Prod. 2017, 107, 13–19. [Google Scholar] [CrossRef]
- Skiba, E.A.; Gladysheva, E.K.; Budaeva, V.V.; Aleshina, L.A.; Sakovich, G.V. Yield and quality of bacterial cellulose from agricultural waste. Cellulose 2022, 29, 1543–1555. [Google Scholar] [CrossRef]
Sample | Content of Constituents *, % | DP | ||||
---|---|---|---|---|---|---|
α-Cellulose | Lignin | Pentosans | Ash | |||
BC | 99.5 ± 0.1 | <0.01 | <0.01 | <0.01 | 3600 ± 10 | |
Blended cellulose (BC/OHC) | 70/30 | – | – | – | – | 2730 ± 10 |
50/50 | – | – | – | – | 1950 ± 10 | |
30/70 | – | – | – | – | 1540 ± 10 | |
OHC | 93.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.31 ± 0.05 | 1450 ± 10 |
Sample | Nitration Method | Nitrogen Content, % | Viscosity, 2% Solution in Acetone, mPa·s | Solubility in Mixed Alcohol–Ester, % | Yield *, % | |
---|---|---|---|---|---|---|
CN BC | MA | 12.20 ± 0.05 | 1050 ± 10 | 11.5 ± 0.5 | 148 ± 2 | |
CN from blended cellulose (BC/OHC) | 70/30 | 11.98 ± 0.05 | 610 ± 5 | 26.3 ± 0.5 | 144 ± 2 | |
50/50 | 11.85 ± 0.05 | 530 ± 5 | 34.9 ± 0.5 | 144 ± 2 | ||
30/70 | 11.74 ± 0.05 | 200 ± 5 | 50.3 ± 1.0 | 143 ± 2 | ||
CN OHC | 11.58 ± 0.05 | 50 ± 5 | 91.0 ± 1.0 | 142 ± 2 | ||
CN BC | NA + MC | 12.32 ± 0.05 | acetonogel | 0.7 ± 0.5 | 158 ± 2 | |
CN from blended cellulose (BC/OHC) | 70/30 | 12.18 ± 0.05 | acetonogel | 1.5 ± 0.5 | 160 ± 2 | |
50/50 | 11.87 ± 0.05 | 7450 ± 50 | 2.9 ± 0.5 | 160 ± 2 | ||
30/70 | 11.76 ± 0.05 | 2455 ± 10 | 3.3 ± 0.5 | 159 ± 2 | ||
CN OHC | 11.60 ± 0.05 | 927 ± 10 | 67.5 ± 1.0 | 150 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gismatulina, Y.A.; Budaeva, V.V. Cellulose Nitrates-Blended Composites from Bacterial and Plant-Based Celluloses. Polymers 2024, 16, 1183. https://doi.org/10.3390/polym16091183
Gismatulina YA, Budaeva VV. Cellulose Nitrates-Blended Composites from Bacterial and Plant-Based Celluloses. Polymers. 2024; 16(9):1183. https://doi.org/10.3390/polym16091183
Chicago/Turabian StyleGismatulina, Yulia A., and Vera V. Budaeva. 2024. "Cellulose Nitrates-Blended Composites from Bacterial and Plant-Based Celluloses" Polymers 16, no. 9: 1183. https://doi.org/10.3390/polym16091183
APA StyleGismatulina, Y. A., & Budaeva, V. V. (2024). Cellulose Nitrates-Blended Composites from Bacterial and Plant-Based Celluloses. Polymers, 16(9), 1183. https://doi.org/10.3390/polym16091183