Effect of Amino Silicone Oil-Phosphorylation Hybrid Modification on the Properties of Microcellulose Fibers
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. ASOP Modified
2.2.2. Preparation of Flame-Retardant Microcellulose Paper
2.3. Characterization
2.3.1. Chemical Structural Analysis
- (1)
- FTIR Spectroscopy
- (2)
- X-ray Diffraction (XRD) Analysis
- (3)
- X-ray Photoelectron Spectroscopy (XPS)
2.3.2. Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDX)
2.3.3. Thermo-Gravimetric and Flammability Analysis
- (1)
- Thermo-Gravimetric Analysis (TGA)
- (2)
- Flammability Analysis
- (3)
- Dynamic Contact Angle
3. Results
3.1. Chemical and Crystal Structure Characterization
3.1.1. FTIR Spectroscopy Analysis
3.1.2. X-ray Diffraction Analysis
3.1.3. XPS Analysis
3.2. Morphological Characterization
3.2.1. Morphological Analysis
3.2.2. EDX Analysis
3.3. Thermal Stability and Flame Retardancy
3.3.1. Thermal Stability Analysis
3.3.2. Flammability Testing
3.4. Hydrophilic Analysis
4. Discussion
4.1. Chemical and Crystal Structure of Microcellulose
4.2. Morphological of Microcellulose
4.3. Thermal and Flame-Retardant Performances
4.4. Hydrophilic Performances
4.5. Modification Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebyetekerwa, M.; Neisiany, R.E.; Försth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Qiu, J.H.; Li, M.; Ding, M.L.; Yao, J.F. Cellulose tailored semiconductors for advanced photocatalysis. Renew. Sustain. Energy Rev. 2022, 154, 111820. [Google Scholar] [CrossRef]
- Eskander, S.B.; Tawfik, M.E. Impacts of Gamma Irradiation on the Properties of Hardwood Composite Based on Rice Straw and Recycled Polystyrene Foam Wastes. Polym. Compos. 2019, 40, 2284–2291. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.Z.; Xu, J.; Zhang, Z.S.; Yuan, B.Y.; Huang, X.L. Improved Mechanical Properties of Carbon Nanotubes-Coated Flax Fiber Reinforced Composites. J. Mater. Sci. 2015, 50, 1117–1128. [Google Scholar] [CrossRef]
- Lu, M.M.; Fuentes, C.A.; Vuure, A.W.V. Moisture sorption and swelling of flax fibre and flax fibre composites. Compos. B Eng. 2022, 231, 109538. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Hemachandra, K.R. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- Nascimento, H.M.; Granzotto, D.C.T.; Radovanovic, E.; Fávaro, S.L. Obtention and characterization of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L. Compos. B Eng. 2021, 227, 109414. [Google Scholar] [CrossRef]
- Qin, F.Q.; Zhang, C.; Zeng, G.M.; Huang, D.L.; Tan, X.F.; Duan, A.B. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renew. Sustain. Energy Rev. 2022, 157, 112056. [Google Scholar] [CrossRef]
- Ao, X.; López, A.V.; Mocerino, D.; González, C.; Wang, D.Y. Flame retardancy and fire mechanical properties for natural fiber/polymer composite: A review. Compos. B Eng. 2024, 268, 111069. [Google Scholar] [CrossRef]
- Cheour, K.; Assarar, M.; Scida, D.; Ayad, R.; Gong, X.L. Effect of Water Ageing on the Mechanical and Damping Properties of Flax-Fibre Reinforced Composite Materials. Compos. Struct. 2016, 152, 259–266. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.M.; Miao, J.J.; Yu, Y.Q.; Zhang, L.P. Properties of Flame-retardant Cellulose Fibers with Ionic Liquid. Fibers Polym. 2017, 18, 915–921. [Google Scholar] [CrossRef]
- He, L.P.; Zhou, Y.H.; Li, X.Q.; Yuan, J.M.; He, H.W. Modification of Ramie Fiber with Amino Silicone Oil. J. Hunan Univ. Nat. Sci. Ed. 2012, 39, 72–75. [Google Scholar]
- Noguchi, Y.; Homma, I.; Matsubara, Y. Complete Nanofibrillation of Cellulose Prepared by Phosphorylation. Cellulose 2017, 24, 1295–1305. [Google Scholar] [CrossRef]
- Suflet, D.M.; Chitanu, G.C.; Popa, V.I. Phosphorylation of Polysaccharides: New Results on Synthesis and Characterisation of Phosphorylated Cellulose. React. Funct. Polym. 2006, 66, 1240–1249. [Google Scholar] [CrossRef]
- Blilid, S.; Katir, N.; Haskouri, J.E.; Lahcini, M.; Royer, S.; Kadib, A. Phosphorylated Micro- vs Nano-Cellulose: A Comparative Study on Their Surface Functionalisation, Growth of Titanium-oxo-Phosphate Clusters and Removal of Chemical Pollutants. J. Chem. 2019, 43, 15555–15562. [Google Scholar] [CrossRef]
- Blilid, S.; Kedzierska, M.; Milowska, K.; Wrońska, N.; Avhaby, M.E.; Katir, N.; Belamie, E.; Alonso, B.; Lisowska, K.; Lahcini, M.; et al. Phosphorylated Micro-and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustain. Chem. Eng. 2020, 8, 18354–18365. [Google Scholar] [CrossRef]
- Illy, N.; Fache, M.; Ménard, R.; Negrell, C.; Caillol, S.; David, G. Phosphorylation of Bio-Based Compounds: The State of the Art. Polym. Chem. 2016, 7, 1517. [Google Scholar] [CrossRef]
- Zhang, T.L.; Wu, M.; Kuga, S.; Ewulonu, C.M.; Huang, Y. Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper. ACS Sustain. Chem. Eng. 2020, 8, 10222–10229. [Google Scholar] [CrossRef]
- Jeong, S.A.; Kang, T.J. Superhydrophobic and Transparent Surfaces on Cotton Fabrics Coated with Silica Nanoparticles for Hierarchical Roughness. Text. Res. J. 2017, 87, 552–560. [Google Scholar] [CrossRef]
- Khakalo, A.; Jaiswal, A.K.; Kumar, V.; Gestranius, M.; Kangas, H.; Tammelin, T. Production of High-Solid-Content Fire-Retardant Phosphorylated Cellulose Microfibrils. ACS Sustain. Chem. Eng. 2021, 9, 12365–12375. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapotke, T.M.; Derradji, M.; Bessa, W. Ecofriendly Isolation and Characterization of Microcrystalline Cellulose from Giant Reed Using Various Acidic Media. Cellulose 2019, 26, 7635–7651. [Google Scholar] [CrossRef]
- Benhamou, A.A.; Boussetta, A.; Nadifiyine, M.; Moubarik, A. Effect of Alkali Treatment and Coupling Agent on Thermal and Mechanical Properties of Opuntia Ficus-Indica Cladodes Fibers Reinforced HDPE Composites. Polym. Bull. 2022, 79, 2089–2111. [Google Scholar] [CrossRef]
- Kokol, V.; Bozic, M.; Vogrincic, R.; Mathew, A.P. Characterization and properties of homo—And heterogenously phosphorylated nanocellulose. Carbohydr. Polym. 2015, 125, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Lee, H.V.; Abd Hamid, S.B. Preparation and Characterization of Cellulose Crystallites Via Fe(III)-, Co(II)- and Ni(II)-Assisted Dilute Sulfuric Acid Catalyzed Hydrolysis Process. J. Nano Res. 2016, 41, 96–109. [Google Scholar] [CrossRef]
- Fortunati, E.; Puglia, D.; Monti, M.; Peponi, L.; Santulli, C.; Kenny, J.M.; Torre, L. Extraction of Cellulose Nanocrystals from Phormium Tenax Fibres. J. Polym. Environ. 2013, 21, 319–328. [Google Scholar] [CrossRef]
- Wang, W.; Kan, Y.C.; Pan, H.F.; Pan, Y.; Li, B.G.; Liew, K.M.; Hu, Y. Phosphorylated Cellulose Applied for the Exfoliation of LDH: An Advanced Reinforcement for Polyvinyl Alcohol. Compos. Part A-Appl. Sci. Manuf. 2017, 94, 170–177. [Google Scholar] [CrossRef]
- Coleman, R.J.; Lawrie, G.; Lambert, L.K.; Whittaker, M.; Jack, K.S.; Grøndahl, L. Phosphorylation of Alginate: Synthesis, Characterization, and Evaluation of in Vitro Mineralization Capacity. Biomacromolecules 2011, 12, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, X.; Qian, X.D.; Xing, W.Y.; Yang, H.Y.; Ma, L.Y.; Lin, Y.; Jiang, S.; Song, L.; Hu, Y.; et al. Functionalized Graphene Oxide/Phosphoramide Oligomer Hybrids Flame Retardant Prepared Via in Situ Polymerization for Improving the Fire Safety of Polypropylene. RSC Adv. 2014, 4, 31782–31794. [Google Scholar] [CrossRef]
- He, L.P.; Li, W.J.; Chen, D.C.; Zhou, D.W.; Lu, G.; Yuan, J.M. Effects of Amino Silicone Oil Modification on Properties of Ramie Fiber and Ramie Fiber/Polypropylene Composites. Mater. Des. 2015, 77, 142–148. [Google Scholar] [CrossRef]
- Xu, Y.J.; Yin, H.; Yuan, S.F.; Chen, Z.R. Film Morphology and Orientation of Amino Silicone Adsorbed onto Cellulose Substrate. Appl. Surf. Sci. 2009, 255, 8435–8442. [Google Scholar] [CrossRef]
- Tang, Y.J.; Shen, X.C.; Zhang, J.H.; Guo, D.L.; Kong, F.G.; Zhang, N. Extraction of Cellulose Nano-Crystals from Old Corrugated Container Fiber Using Phosphoric Acid and Enzymatic Hydrolysis Followed by Sonication. Carbohydr. Polym. 2015, 125, 360–366. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Xu, J. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 2017, 7, 33486–33493. [Google Scholar] [CrossRef]
- Benhamou, A.A.; Kassab, Z.; Nadifiyine, M.; Salim, M.H.; Sehaqui, H.; Moubarik, A.; El Achaby, M. Extraction, Characterization and Chemical Functionalization of Phosphorylated Cellulose Derivatives from Giant Reed Plant. Cellulose 2021, 28, 4625–4642. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qin, Z.Y.; Liang, B.L.; Liu, N.; Zhou, Z.; Chen, L. Facile Extraction of Thermally Stable Cellulose Nanocrystals with A High Yield of 93% Through Hydrochloric Acid Hydrolysis Under Hydrothermal Conditions. J. Mater. Chem. A 2013, 1, 3938–3944. [Google Scholar] [CrossRef]
- Achaby, E.M.; Kassab, Z.; Aboulkas, A.; Gaillard, C.; Barakat, A. Reuse of Red Algae Waste for the Production of Cellulose Nanocrystals and Its Application in Polymer Nanocomposites. Int. J. Biol. Macromol. 2018, 106, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.Y.; Zhao, S.S.; Peng, L.Y.; Fang, Z.Q.; Isogai, A. A Systematic Study for the Structures and Properties of Phosphorylated Pulp Fibers Prepared Under Various Conditions. Cellulose 2022, 29, 7365–7376. [Google Scholar] [CrossRef]
- Kim, H.; Youn, J.R.; Song, Y.S. Eco-Friendly Flame Retardant Nanocrystalline Cellulose Prepared Via Silylation. Nanotechnology 2018, 29, 455702. [Google Scholar] [CrossRef] [PubMed]
- Ghanadpour, M.; Carosio, F.; Larsson, P.T.; Wågberg, L. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Biomacromolecules 2015, 16, 3399–3410. [Google Scholar] [CrossRef] [PubMed]
- Cini, N.; Ball, V. Polyphosphates as Inorganic Polyelectrolytes Interacting with Oppositely Charged Ions, Polymers and Deposited on Surfaces: Fundamentals and Applications. Adv. Colloid. Interface Sci. 2014, 209, 84–97. [Google Scholar] [CrossRef]
- Carosio, F.; Blasio, A.D.; Cuttica, F.; Alongi, J.; Malucelli, G. Flame Retardancy of Polyester and Polyester-Cotton Blends Treated with Caseins. Ind. Eng. Chem. Res. 2014, 53, 3917–3923. [Google Scholar] [CrossRef]
- Alongi, J.; Carosio, F.; Malucelli, G. Influence of Ammonium Polyphosphate-/Poly(Acrylic Acid)-Based Layer by Layer Architectures on the Char Formation in Cotton, Polyester and Their Blends. Polym. Degrad. Stab. 2012, 97, 1644–1653. [Google Scholar] [CrossRef]
- Chen, S.H.; Ren, N.; Cui, M.; Huang, R.L.; Qi, W.; He, Z.M.; Su, R. Heat Soaking Pretreatment for Greener Production of Phosphorylated Cellulose Nanofibrils with Higher Charge Density. ACS Sustain. Chem. Eng. 2022, 10, 8876–8884. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Wicklein, B.; Carosio, F.; Wågberg, L. All-Natural and Highly Flame-Resistant Freeze-Cast Foams Based on Phosphorylated Cellulose Nanofibrils. Nanoscale 2018, 10, 4085–4095. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Khelifa, F.; Rose, G.; Brohez, S.; Delvosalle, C.; Dubois, P. Cellulose/Phosphorus Combinations for Sustainable Fire Retarded Polylactide. Eur. Polym. J. 2016, 74, 218–228. [Google Scholar] [CrossRef]
- Espinosa, S.C.; Kuhnt, T.; Foster, E.J.; Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules 2013, 14, 1223–1230. [Google Scholar] [CrossRef]
- Kassab, Z.; Kassem, I.; Hannache, H.; Bouhfid, R.; Qaiss, A.E.K.; Achaby, M.E. Tomato Plant Residue as New Renewable Source for Cellulose Production: Extraction of Cellulose Nanocrystals with Different Surface Functionalities. Cellulose 2020, 27, 4287–4303. [Google Scholar] [CrossRef]
- El-Shafei, A.M.; Adel, A.M.; Ibrahim, A.A.; Al-Shemy, M.T. Dual Functional Jute Fabric Biocomposite with Chitosan and Phosphorylated Nano-Cellulose (Antimicrobial and Thermal Stability). Int. J. Biol. Macromol. 2019, 124, 733–741. [Google Scholar] [CrossRef]
- Sirvio, J.A.; Hasa, T.; Ahola, J.; Liimatainen, H.; Niinimäki, J.; Hormi, O. Phosphonated Nanocelluloses from Sequential Oxidative–Reductive Treatment-Physicochemical Characteristics and Thermal Properties. Carbohydr. Polym. 2015, 133, 524–532. [Google Scholar] [CrossRef] [PubMed]
- He, L.P.; Li, W.J.; Chen, D.C.; Yuan, J.M.; Lu, G.; Zhou, D.W. Microscopic Mechanism of Amino Silicone Oil Modification and Modification Effect with Different Amino Group Contents Based on Molecular Dynamics Simulation. Appl. Surf. Sci. 2018, 440, 331–340. [Google Scholar] [CrossRef]
- Messiry, E.I.; Ouffy, A.E.; Issa, M. Microcellulose particles for surface modification to enhance moisture management properties of polyester, and polyester/cotton blend fabrics. Alex. Eng. J. 2015, 54, 127–140. [Google Scholar] [CrossRef]
- Cataldi, A.; Corcione, C.E.; Frigione, M.; Pegoretti, A. Photocurable resin/nanocellulose composite coatings for wood protection. Prog. Org. Coat. 2017, 106, 128–136. [Google Scholar] [CrossRef]
- Cataldi, A.; Corcione, C.E.; Frigione, M.; Pegoretti, A. Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Prog. Org. Coat. 2016, 99, 230–239. [Google Scholar] [CrossRef]
- Basil, M.; Anirudh, M.K.; Nandhu Lal, A.M.; Harikrishnan, M.P.; Kundu, P.; Kothakota, A. Development and characterization of microfiber incorporated with industrial biopolymer composite based biodegradable cutlery: An alternative to single use plastic. Ind. Crops Prod. 2023, 205, 117526. [Google Scholar] [CrossRef]
- Huang, T.X.; Kloce Li, D.F.; Ek, M. Hydrophobization of cellulose oxalate using oleic acid in a catalyst-free esterification suitable for preparing reinforcement in polymeric composites. Carbohydr. Polym. 2021, 257, 117615. [Google Scholar] [CrossRef] [PubMed]
- Sanguanwong, A.; Flood, A.E.; Ogawa, M.; Sampedro, R.M.; Darder, M.; Wicklein, B.; Aranda, P.; Ruiz-Hitzky, E. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. J. Hazard. Mater. 2021, 417, 126068. [Google Scholar] [CrossRef]
- Gupta, P.; Verma, C.; Maji, P.K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. J. Supercrit. Fluids 2019, 152, 104537. [Google Scholar] [CrossRef]
- Chen, L.D.; Wu, J.; Zhu, G.J.; Liu, C.; Xu, T.T.; Huang, L.L. Comparison of hydrophobic cellulose nanofibrils modified with different diisocyanates for circulating oil absorption. Int. J. Biol. Macromol. 2024, 258, 129107. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Qu, J.H.; Qian, L.W.; Li, Y.; Liu, J.T.; Yao, X. Multifunctional composite films based on polyvinyl alcohol, quaternary ammonium salt modified cellulose nanofibers and tannic acid-iron ion coordination complexes for food packaging. Int. J. Biol. Macromol. 2023, 253, 126857. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Liu, X.H.; Ren, Y.L.; Li, Y.S. Phosphorated cellulose as a cellulose-based filler for developing continuous fire resistant lyocell fibers. J. Clean. Prod. 2022, 368, 133242. [Google Scholar] [CrossRef]
Sample | 2θ(°) | CrI | |||
---|---|---|---|---|---|
(1 0) | (110) | (002) | (004) | ||
MCF | 14.99 | 16.30 | 22.50 | 34.46 | 79.9 |
PMCF | 15.28 | 16.38 | 22.68 | 34.61 | 85.9 |
ASO-MCF | 15.18 | 16.38 | 22.61 | 34.57 | 80.1 |
ASOP-MCF | 15.15 | 16.32 | 22.58 | 34.59 | 81.2 |
Sample | N2 | Air | |||||||
---|---|---|---|---|---|---|---|---|---|
T10%/°C | T50%/°C | Tmax/°C | RC600/wt% | T10%/°C | T50%/°C | Tmax1/°C | Tmax2/°C | RC600/wt% | |
MCF | 325.1 | 351.7 | 353.1 | 5.9 | 309.3 | 327.8 | 327.9 | 420.0 | 0.38 |
PMCF | 300.3 | 346.2 | 345.1 | 13.36 | 281.2 | 316.7 | 312.5 | 458.6 | 5.26 |
ASO-MCF | 330.0 | 366.8 | 368.7 | 13.1 | 306.2 | 329.6 | 328.8 | 481.1 | 3.68 |
ASOP-MCF | 278.7 | 361.9 | 365.7 | 19.2 | 280.3 | 323.4 | 321.3 | 475.3 | 6.36 |
Sample | Burning Rate, cm/s | Residue after Burning, wt% |
---|---|---|
MCF | 1.14 | 4.2 |
ASO-MCF | 0.8 | 15.3 |
PMCF | 2.67 | 80.1 |
ASOP-MCF | 3.95 | 93.7 |
Modification Methods | Contact Angle (°) | References |
---|---|---|
Phosphorylated and chitosan modified microcellulose | 93.4 | Blilid [16] |
Textile binder modified Microcrystalline Cellulose | 99.67 | Messiry [50] |
UV-light curable modified cellulose and microcrystalline cellulose | 111.1, 108.2 | Cataldi [51,52] |
Polybutylene adipate terephthalate modified microcellulose | 83.1 | Basil [53] |
Oleic acid modified microcellulose | 130.0 | Huang [54] |
TEMPO and MTMS modified cellulose | 128.5 | Sanguanwong [55] |
Methyltrimethoxysilane (MTMS) modified cellulose | 126.8 | Gupta [56] |
2, 4-toluene diisocyanate and 4,4′-diphenylmethane diisocyanate modified cellulose | 131.3 | Chen [57] |
Quaternary ammonium salt (QAS) modified cellulose | 97.3 | Li [58] |
ASOP modified microcellulose | 140.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Zhang, G.; Li, C.; Xu, S.; He, L. Effect of Amino Silicone Oil-Phosphorylation Hybrid Modification on the Properties of Microcellulose Fibers. Polymers 2024, 16, 1123. https://doi.org/10.3390/polym16081123
Yuan Q, Zhang G, Li C, Xu S, He L. Effect of Amino Silicone Oil-Phosphorylation Hybrid Modification on the Properties of Microcellulose Fibers. Polymers. 2024; 16(8):1123. https://doi.org/10.3390/polym16081123
Chicago/Turabian StyleYuan, Quan, Guimei Zhang, Chunxuan Li, Shiwei Xu, and Liping He. 2024. "Effect of Amino Silicone Oil-Phosphorylation Hybrid Modification on the Properties of Microcellulose Fibers" Polymers 16, no. 8: 1123. https://doi.org/10.3390/polym16081123
APA StyleYuan, Q., Zhang, G., Li, C., Xu, S., & He, L. (2024). Effect of Amino Silicone Oil-Phosphorylation Hybrid Modification on the Properties of Microcellulose Fibers. Polymers, 16(8), 1123. https://doi.org/10.3390/polym16081123