Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silver Nanoparticles
2.3. Screening of Antimicrobial Activity of the Synthesised AgNP-HS Compositions
3. Results and Discussion
3.1. Characteristics of Humic Materials Used in this Study
3.2. Humic Polyanions—Assisted Synthesis of AgNPs under MW and Conventional Heating Conditions Followed by UV–VIS Spectroscopy
3.3. AgNP Size Distribution Assessment Using TEM and DLS
3.4. Assessment of the Antibacterial Activity of the AgNPs Stabilised with Coal Humates Synthesised in This Study
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Havelcová, M.; Mizera, J.; Sýkorová, I.; Pekar, M. Sorption of metal ions on lignite and the derived humic substances. J. Hazard. Mater. 2009, 161, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Perminova, I.V. From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology. Pure Appl. Chem. PAC 2019, 91, 851–864. [Google Scholar] [CrossRef]
- Baigorri, R.; García-Mina, J.M.; Aroca, R.F.; Alvarez-Puebla, A.A. Optical Enhancing Properties of Anisotropic Gold Nano-plates Prepared with Different Fractions of a Natural Humic Substance. Chem. Mater. 2008, 20, 1516–1521. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Lebedev, V.A.; Shirshin, E.A.; Rumyantsev, A.M.; Volikov, A.B.; Garshev, A.V.; Goodilin, E.A.; Perminova, I.V. Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. CrystEngComm 2017, 19, 876–886. [Google Scholar] [CrossRef]
- Venezia, V.; Verrillo, M.; Gallucci, N.; Di Girolamo, R.; Luciani, G.; D’Errico, G.; Paduano, L.; Piccolo, A.; Vitiello, G. Ex-ploiting bioderived humic acids: A molecular combination with ZnO nanoparticles leads to nanostructured hybrid interfaces with enhanced pro-oxidant and antibacterial activity. J. Environ. Chem. Eng. 2023, 11, 108973. [Google Scholar] [CrossRef]
- Pomogailo, A.D.; Kydralieva, K.A.; Zaripova, A.A.; Muratov, V.S.; Dzhardimalieva, G.I.; Pomogailo, S.I.; Golubeva, N.D.; Jorobekova, S.J. Magnetoactive Humic-Based Nanocomposites. In Macromolecular Symposia; WILEY-VCH Verlag: Weinheim, Germany, 2011; Volume 304, pp. 18–23. [Google Scholar] [CrossRef]
- Illés, E.; Tombácz, E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, N.A.; Polyakov, A.Y.; Lebedev, V.A.; Abroskin, D.P.; Volkov, D.S.; Pankratov, D.A.; Klein, O.I.; Senik, S.V.; Sorkina, T.A.; Garshev, A.V.; et al. Key roles of size and crystallinity of nanosized iron hydr(oxides) stabilized by humic substances in iron bioavailability to plants. J. Agric. Food Chem. 2017, 65, 11157–11169. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1994; 512p. [Google Scholar]
- Anees, A.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M. Bactericidal Activity of Silver Nanoparticles: A Mechanistic Review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; El-Beheri, N.G.; Agwa, M.M. Wound Healing of Nanofiber Comprising Polygalacturonic/Hyaluronic Acid Embedded Silver Nanoparticles: In-Vitro and In-Vivo Studies. Carbohydr. Polym. 2020, 238, 116175. [Google Scholar] [CrossRef]
- Paladini, F.; Pollini, M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef] [PubMed]
- Swolana, D.; Wojtyczka, R.D. Activity of Silver Nanoparticles against Staphylococcus spp. Int. J. Mol. Sci. 2022, 23, 4298. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Hńfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activ-ity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Huang, Y.; Du, Q.; Sun, Y. Silver Nanoparticle Induced Toxicity to Human Sperm by Increasing ROS (Reactive Oxygen Species) Production and DNA Damage. Environ. Toxicol. Pharmacol. 2017, 52, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Litvin, V.A.; Galagan, R.L.; Minaev, B.F. Kinetic and Mechanism Formation of Silver Nanoparticles Coated by Synthetic Humic Substances. Colloids Surf. A Physicochem. Eng. Asp. 2012, 414, 234–243. [Google Scholar] [CrossRef]
- Litvin, V.A.; Minaev, B.F. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 108, 115–122. [Google Scholar] [CrossRef]
- Sal’nikov, D.S.; Pogorelova, A.S.; Makarov, S.V.; Vashurina, I.Y. Silver ion reduction with peat fulvic acids. Russ. J. Appl. Chem. 2009, 82, 545–548. [Google Scholar] [CrossRef]
- Aleksandrova, G.P.; Lesnichaya, M.V.; Dolmaa, G.; Klimenkov, I.V.; Sukhov BGRegdel, D.; Trofimov, B.A. Silver-containing nanocomposites with antioxidant activity based on humic substances of different origin. Russ. Chem. Bull. Int. Ed. 2017, 66, 143–149. [Google Scholar] [CrossRef]
- Alexandrova, G.P.; Dolmaa, G.; Enkhbadral, U.; Grishenko, G.L.; Tserenpi, S.; Sukhov, B.G.; Regdel, D.; Trofimov, B.A. A new humic acid remedy with addition of silver nanoparticles. Mong. J. Chem. 2012, 13, 7–11. [Google Scholar] [CrossRef]
- Zykova, M.V.; Volikov, A.B.; Buyko, E.E.; Bratishko, K.A.; Ivanov, V.V.; Konstantinov, A.I.; Logvinova, L.A.; Mihalyov, D.A.; Sobolev, N.A.; Zhirkova, A.M.; et al. Enhanced Antioxidant Activity and Reduced Cytotoxicity of Silver Nanoparticles Stabilized by Different Humic Materials. Polymers 2023, 15, 3386. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Frediani, M.; Briens, C.; Berruti, F.; Rosi, L. An Overview of Temperature Issues in Microwave-Assisted Pyrolysis. Processes 2019, 7, 658. [Google Scholar] [CrossRef]
- Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014, 47, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction: Fundamentals and Efficient Microwave-Associated Heat-ing Strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, M.R.; Liu, Y.; Okasinski, J.S.; Ren, Y.; Sun, Y. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-Ray Scattering. Nano Lett. 2016, 16, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Praneeth, N.V.S.; Paria, S. Microwave-Assisted One-Pot Synthesis of Anisotropic Gold Nanoparticles with Active High-Energy Facets for Enhanced Catalytic and Metal Enhanced Fluorescence Activities. CrystEngComm 2018, 20, 4297–4304. [Google Scholar] [CrossRef]
- Nishioka, M.; Miyakawa, M.; Kataoka, H.; Koda, H.; Sato, K.; Suzuki, T.M. Continuous Synthesis of Monodispersed Silver Nanoparticles Using a Homogeneous Heating Microwave Reactor System. Nanoscale 2011, 3, 2621–2626. [Google Scholar] [CrossRef]
- Helmlinger, J.; Heise, M.; Heggen, M.; Ruck, M.; Epple, M. A Rapid, High-Yield and Large-Scale Synthesis of Uniform Spherical Silver Nanoparticles by a Microwave-Assisted Polyol Process. RSC Adv. 2015, 5, 92144–92150. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Özkar, S.; Finke, R.G. Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation. J. Phys. Chem. C 2017, 121, 27643–27654. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Nissenbaum, V.D.; Abkhalimov, E.V.; Kustov, A.L.; Ershov, B.G.; Kustov, L.M. Microwave-Assisted Synthesis of Water-Dispersible Humate-Coated Magnetite Nanoparticles: Relation of Coating Process Parameters to the Properties of Nanoparticles. Nanomaterials 2020, 10, 1558. [Google Scholar] [CrossRef]
- da Silva, L.C.; Abate, G.; Oliveira, N.A.; Fantini, M.C.D.A.; Masini, J.C.; Mercuri, L.P.; Olkhovyk, O.; Jaroniec, M.; Matos, J.R. Microwave synthesis of FDU-1 silica with incorporated humic acid and its application for adsorption of Cd2+ from aqueous solutions. Stud. Surf. Sci. Catal. 2005, 156, 941–950. [Google Scholar] [CrossRef]
- Hertkorn, N.; Permin, A.; Perminova, I.; Kovalevskii, D.; Yudov, M.; Petrosyan, V.; Kettrup, A. Comparative Analysis of Partial Structures of a Peat Humic and Fulvic Acid Using One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Environ. Qual. 2002, 31, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ma, C.; Zhao, J.; Guo, H.; Dai, Y.; Wang, Z.; Xing, B. Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. Sci. Total Environ. 2019, 679, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Polte, J.; Xenia Tuaev, X.; Wuithschick, M.; Fischer, A.; Thuenemann, A.F.; Rademann, K.; Kraehnert, R.; Emmerling, F. For-mation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano 2012, 6, 5791–5802. [Google Scholar] [CrossRef] [PubMed]
- Van Hyning, D.L.; Klemperer, W.G.; Zukoski, C.F. Silver Nanoparticle Formation: Predictions and Verification of the Ag-gregative Growth Model. Langmuir 2001, 17, 3128–3135. [Google Scholar] [CrossRef]
- Watzky, M.A.; Finke, R.G. Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth. J. Am. Chem. Soc. 1997, 119, 10382–10400. [Google Scholar] [CrossRef]
- Finney, E.E.; Finke, R.G. The Four-Step, Double-Autocatalytic Mechanism for Transition-Metal Nanocluster Nucleation, Growth, and Then Agglomeration: Metal, Ligand, Concentration, Temperature, and Solvent Dependency Studies. Chem. Mater. 2008, 20, 1956–1970. [Google Scholar] [CrossRef]
- Xiong, Y.; Siekkinen, A.R.; Wang, J.; Yin, Y.; Kim, M.J.; Xia, Y. Synthesis of Silver Nanoplates at High Yields by Slowing Down the Polyol Reduction of Silver Nitrate with Polyacrylamide. J. Mater. Chem. 2007, 17, 2600–2602. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 2nd ed.; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Hamaker, H.C. The London—Van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Ohshima, H. Effective surface potential and double-layer interaction of colloidal particles. J. Colloid Interface Sci. 1995, 174, 45–52. [Google Scholar] [CrossRef]
- Lee, K.; Sathyagal, A.N.; McCormickLee, A.V. A closer look at an aggregation model of the Stöber process. Colloids Surf. A 1998, 144, 115–125. [Google Scholar] [CrossRef]
- Kim, T.; Lee, K.; Gong, M.-S.; Joo, S.-W. Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 2005, 21, 9524–9528. [Google Scholar] [CrossRef]
- Chow, M.K.; Zukoski, C.F. Gold sol formation mechanisms: Role of colloidal stability. J. Colloid Interface Sci. 1994, 165, 97–109. [Google Scholar] [CrossRef]
Content of Elements, % (Mass Including Ash) | Atomic Ratios | |||||
---|---|---|---|---|---|---|
Sample | C | H | N | S | H/C | C/N |
CHL | 39.2 ± 0.2 | 3.35 ±0.05 | 0.97 ±0.03 | 0.48 ± 0.04 | 1.0 | 47 |
CHP | 39.6 ±0.5 | 3.62 ±0.08 | 0.91 ± 0.03 | 0.51±0.01 | 1.1 | 51 |
CHG | 38.5 ± 0.3 | 3.78 ± 0.04 | 0.76 ± 0.01 | 0.47 ± 0.03 | 1.2 | 59 |
FA | 40.2 ± 0.1 | 4.29 ± 0.03 | 0.70 ± 0.01 | 0.67 ± 0.01 | 1.3 | 67 |
Samples | Chemical Shift, ppm | ||||||
---|---|---|---|---|---|---|---|
0–56 | 56–89 | 89–145 | 145–165 | 165–185 | 185–220 | ||
CAlk | CAlkO | CAr | CArO | COO | C=O | ΣCAr/ΣCAlk | |
CHL | 26 | 10 | 38 | 9 | 15 | 2 | 1.3 |
CHP | 9 | 11 | 49 | 11 | 17 | 3 | 3.0 |
CHG | 21 | 8 | 47 | 8 | 14 | 3 | 1.9 |
FA | 28 | 17 | 22 | 7 | 21 | 5 | 0.63 |
Sample | d-Avg *, nm | d-Pk1-Avg *, nm | d-Pk2-Avg *, nm | d-Pk3-Avg *, nm | Z-Potential, mV |
---|---|---|---|---|---|
NMW-CHG-AgNPs | 53 | 141 | 3 | 2918 | −(44 ± 12) |
NMW-CHP-AgNPs | 87 | 177 | 2861 | 1 | −(27 ± 19) |
NMW-CHL-AgNPs | 20 | 34 | 1912 | 1 | −(30 ± 14) |
NMW-FA-AgNPs | 128 | 263 | 17 | 4612 | −(43 ± 17) |
MW-CHG-AgNPs | 80 | 146 | 3352 | 6 | −(35 ± 19) |
MW-CHP-AgNPs | 27 | 59 | 3 | 3500 | −(28 ± 24) |
MW-CHL-AgNPs | 58 | 124 | 12 | 1 | −(34 ± 29) |
MW-FA-AgNPs | 137 | 233 | 29 | 3645 | −(36 ± 18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Larionov, K.S.; Zhang, S.; Sobolev, N.A.; Konstantinov, A.I.; Volkov, D.S.; Suslova, E.V.; Chernov, V.E.; Poloskov, A.I.; Glushakov, R.I.; et al. Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications. Polymers 2024, 16, 587. https://doi.org/10.3390/polym16050587
Zhang Y, Larionov KS, Zhang S, Sobolev NA, Konstantinov AI, Volkov DS, Suslova EV, Chernov VE, Poloskov AI, Glushakov RI, et al. Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications. Polymers. 2024; 16(5):587. https://doi.org/10.3390/polym16050587
Chicago/Turabian StyleZhang, Yu, Konstantin S. Larionov, Simeng Zhang, Nikita A. Sobolev, Andrey I. Konstantinov, Dmitry S. Volkov, Evgeniya V. Suslova, Vladimir E. Chernov, Anton I. Poloskov, Ruslan I. Glushakov, and et al. 2024. "Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications" Polymers 16, no. 5: 587. https://doi.org/10.3390/polym16050587
APA StyleZhang, Y., Larionov, K. S., Zhang, S., Sobolev, N. A., Konstantinov, A. I., Volkov, D. S., Suslova, E. V., Chernov, V. E., Poloskov, A. I., Glushakov, R. I., & Perminova, I. V. (2024). Humic Polyelectrolytes Facilitate Rapid Microwave Synthesis of Silver Nanoparticles Suitable for Wound-Healing Applications. Polymers, 16(5), 587. https://doi.org/10.3390/polym16050587