Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental RBDCs Preparation
2.2. Specimen Fabrication
2.3. Scanning Electron Microscopy (SEM)
2.4. Antibacterial Testing
2.5. Agar Diffusion Test
2.6. Direct Contact Inhibition Test
2.7. Vickers Microhardness Test
2.8. Data Analysis
3. Results
3.1. Scanning Electron Microscopy
3.2. Agar Diffusion Test
3.3. Direct Contact Inhibition Test
3.4. Surface Hardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.L.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef]
- Fejerskov, O. Changing paradigms in concepts on dental caries: Consequences for oral health care. Caries Res. 2004, 38, 182–191. [Google Scholar] [CrossRef]
- Jokstad, A.; Bayne, S.; Blunck, U.; Tyas, M.; Wilson, N. Quality of dental restorations FDI Commission Project 2–95. Int. Dent. J. 2001, 51, 117–158. [Google Scholar] [CrossRef]
- Bernardo, M.; Luis, H.; Martin, M.D.; Leroux, B.G.; Rue, T.; Leitão, J. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J. Am. Dent. Assoc. 2007, 138, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Combe, E.C.; Burke, F.J.T. Contemporary resin-based composite materials for direct placement restorations: Packables, flowables and others. Dent. Update 2000, 27, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Van de Sande, F.H.; Opdam, N.J.; Da Rosa Rodolpho, P.A.; Correa, M.B.; Demarco, F.F.; Cenci, M.S. Patient risk factors’ influence on survival of posterior composites. J. Dent. Res. 2013, 92, S78–S83. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.; Ye, Q.; Misra, A.; Goncalves, S.E.d.P.; Laurence, J.S. Proteins, pathogens, and failure at the composite-tooth interface. J. Dent. Res. 2014, 93, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.; Weiger, R.; Netuschil, L.; Brüch, M. Microbial accumulation and vitality on different restorative materials. Dent. Mater. 1993, 3, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shi, L.; Yin, A.; Mao, Z.; Maitland, E.; Nicholas, S. Primary care quality among different health care structures in Tibet, China. BioMed. Res. Int. 2015, 2015, 206709. [Google Scholar] [CrossRef]
- Mallya, P.S.; Mallya, S. Microbiology and clinical implications of dental caries-a review. J. Evol. Med. Dent. Sci. 2020, 9, 3670–3675. [Google Scholar]
- Rath, S.; Bal, S.C.B.; Dubey, D. Oral biofilm: Development mechanism, multidrug resistance, and their effective management with novel techniques. Rambam. Maimonides. Med. J. 2021, 12, e0004. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Auer, D.L.; Buchalla, W.; Hiller, K.-A.; Maisch, T.; Hellwig, E. Cetylpyridinium chloride: Mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob. Agents. Chemother. 2020, 64, 576. [Google Scholar] [CrossRef] [PubMed]
- Nasila, K.; Shijith, K.V.; Mohammed Shihab, K.K.; Ramya, C. A Review on Cetylpyridinium Chloride. IJRR 2021, 8, 439–445. [Google Scholar]
- Kozak, K.M.; Gibb, R.; Dunavent, J.; White, D.J. Efficacy of a high bioavailable cetylpyridinium chloride mouthrinse over a 24-hour period: A plaque imaging study. Am. J. Dent. 2005, 18, 18A–23A. [Google Scholar]
- Imazato, S. Antibacterial properties of resin composites and dentin bonding systems. Dent. Mater. 2003, 19, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.; Spratt, D.A.; Pratten, J.; Gulabivala, K.; Mordan, N.J.; Young, A.M. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005, 26, 7145–7153. [Google Scholar] [CrossRef]
- Hojati, S.T.; Alaghemand, H.; Hamze, F.; Babaki, F.A.; Rajab-Nia, R.; Rezvani, M.B. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent. Mater. 2013, 29, 495–505. [Google Scholar] [CrossRef]
- Imazato, S.; McCabe, J.F. Influence of incorporation of antibacterial monomer on curing behavior of a dental composite. J. Dent. Res. 1994, 73, 1641–1645. [Google Scholar] [CrossRef]
- Ebi, N.; Imazato, S.; Noiri, Y.; Ebisu, S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent. Mater. 2001, 17, 485–491. [Google Scholar] [CrossRef]
- Beyth, N.; Yudovin-Farber, I.; Perez-Davidi, M.; Domb, A.J.; Weiss, E.I. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc. Natl. Acad. Sci. USA 2010, 107, 22038–22043. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, S.; Liang, X.; Qin, W.; Liu, F.; Lin, Z.; He, J. The antibacterial, cytotoxic, and flexural properties of a composite resin containing a quaternary ammonium monomer. J. Prosthet. Dent. 2018, 120, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Weir, M.D.; Xu, H.H.; Kraigsley, A.M.; Lin, N.J.; Lin-Gibson, S.; Zhou, X. Antibacterial and physical properties of calcium–phosphate and calcium–fluoride nanocomposites with chlorhexidine. Dent. Mater. 2012, 28, 573–583. [Google Scholar] [CrossRef]
- Cheng, L.; Weir, M.D.; Zhang, K.; Xu, S.M.; Chen, Q.; Zhou, X.; Xu, H.H.K. Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. J. Dent. Res. 2012, 91, 460–466. [Google Scholar] [CrossRef]
- Campos, K.d.P.L.; Viana, G.M.; Cabral, L.M.; Portela, M.B.; Junior, R.H.; Cavalcante, L.M.; Lourenço, E.J.V.; Telles, D.d.M. Self-cured resin modified by quaternary ammonium methacrylates and chlorhexidine: Cytotoxicity, antimicrobial, physical, and mechanical properties. Dent. Mater. 2020, 36, 68–75. [Google Scholar] [CrossRef]
- Wu, M.H.; Cheng, Y.; Wang, T.Y.; Ji, J.F.; Xue, F.; Yu, X. Clinical observation on the treatment of acute simple pharyngitis with cetylpyridinium chloride buccal tablets. WJOHNS 2019, 33, 466–468. [Google Scholar]
- Yegin, Y.; Oh, J.K.; Akbulut, M.; Taylor, T. Cetylpyridinium chloride produces increased zeta-potential on Salmonella Typhimurium cells, a mechanism of the pathogen’s inactivation. NPJ Sci. Food 2019, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Pramod, K.; Kotta, S.; Jijith, U.; Aravind, A.; Abu Tahir, M.; Manju, C.; Gangadharappa, H. Surfactant- based prophylaxis and therapy against COVID-19: A possibility. Med. Hypotheses 2020, 143, 110081. [Google Scholar] [CrossRef]
- Park, J.-B.; Kang, J.-H.; Song, K.B. Antibacterial activities of a cinnamon essential oil with cetylpyridinium chloride emulsion against Escherichia coli O157: H7 and Salmonella Typhimurium in basil leaves. Food Sci. Biotechnol. 2018, 27, 47–55. [Google Scholar] [CrossRef]
- Alemany, A.; Perez-Zsolt, D.; Raïch-Regué, D.; Muñoz-Basagoiti, J.; Ouchi, D.; Laporte-Villar, C.; Baro, B.; Henríquez, N.; Prat, N.; Gianinetto, M.O.; et al. Cetylpyridinium chloride mouthwash to reduce shedding of infectious SARS-CoV-2: A double-blind randomized clinical trial. J. Dent. Res. 2022, 101, 1450–1456. [Google Scholar] [CrossRef]
- Haps, S.; Slot, D.E.; Berchier, C.E.; Van der Weijden, G.A. The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: A systematic review. Int. J. Dent. Hyg. 2008, 6, 290–303. [Google Scholar] [CrossRef]
- Herrera, D.; Escudero, N.; Pérez, L.; Otheo, M.; Cañete-Sánchez, E.; Pérez, T. Clinical and microbiological effects of the use of a cetylpyridinium chloride dentifrice and mouth rinse in orthodontic patients: A 3-month randomized clinical trial. Eur. J. Ortho. 2018, 40, 465–474. [Google Scholar] [CrossRef]
- Steinberg, D.; Moldovan, M.; Molukandov, D. Testing a degradable topical varnish of cetylpyridinium chloride in an experimental dental biofilm model. J. Antimicrob. Chemother. 2001, 48, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Yoshihara, K.; Nagaoka, N.; Makita, Y.; Obika, H.; Okihara, T. Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomater. 2019, 100, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Al-Musallam, T.A.; Evans, C.A.; Drummond, J.L.; Matasa, C.; Wu, C.D. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am. J. Ortho. Dentofac. 2006, 129, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Özel, M.B.; Tüzüner, T.; Güplü, Z.A.; Coleman, N.J.; Hurt, A.P.; Buruk, C.K. The antibacterial activity and release of quaternary ammonium compounds in an orthodontic primer. AOL 2017, 30, 141–148. [Google Scholar] [PubMed]
- Gjorgievska, E.S.; Nicholson, J.W.; Coleman, N.J.; Booth, S.; Dimkov, A.; Hurt, A. Component release and mechanical properties of endodontic sealers following incorporation of antimicrobial agents. BioMed Res. Int. 2017, 2017, 2129807. [Google Scholar] [CrossRef] [PubMed]
- Verma, T.; Sharma, P.; Kumar, P.; Tyagi, K.; Bhatnagar, S.; Raza, M. Evaluation of antimicrobial property of modified acrylic resin–containing cetylpyridinium chloride. J. Orthod. Sci. 2020, 9, 1. [Google Scholar]
- Melo, M.A.S.; Wu, J.; Weir, M.D.; Xu, H.H.K. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate. J. Dent. 2014, 42, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Yoshihara, K.; Nagaoka, N.; Van Meerbeek, B.; Yoshida, Y. Novel composite cement containing the anti-microbial compound CPC-Montmorillonite. Dent. Mater. 2022, 38, 33–43. [Google Scholar] [CrossRef]
- Hal, H.M.; Ali, A.I.; El-Wassefy, N.A.; Montaser, M.A. Effect of Food Simulating Solvents on Surface Roughness and Microhardness of Bulk Fill Resin Composites. MJD 2022, 9, 176–180. [Google Scholar] [CrossRef]
- ISO 4049; Polymer Based Filling, Restorative and Luting Materials. ISO: Geneva, Switzerland, 2019.
- Shawkat, E.S.; Shortall, A.C.; Addison, O.; Palin, W.M. Oxygen inhibition and incremental layer bond strengths of resin composites. Dent. Mater. 2009, 25, 1338–1346. [Google Scholar] [CrossRef]
- Palin, W.M.; Fleming, G.J.; Burke, F.J.; Marquis, P.M.; Randall, R.C. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dent. Mater. 2005, 21, 852–863. [Google Scholar] [CrossRef]
- Stencel, R.; Kasperski, J.; Pakieła, W.; Mertas, A.; Bobela, E.; Barszczewska-Rybarek, I. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials 2018, 11, 1031. [Google Scholar] [CrossRef]
- Namba, N.; Yoshida, Y.; Nagaoka, N.; Takashima, S.; Matsuura-Yoshimoto, K.; Maeda, H. Antibacterial effect of bactericide immobilized in resin matrix. Dent. Mater. 2009, 25, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Ilie, N. The effect of aging on the mechanical properties of nanohybrid composites based on new monomer formulations. Clin. Oral Investig. 2013, 17, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Poggio, C.; Lombardini, M.; Gaviati, S.; Chiesa, M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. JCD 2012, 15, 237. [Google Scholar] [CrossRef]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef]
- Kumar, N.; Shortall, A. Standardisation of mixing method for experimental resin-based composite. J. Pak. Dent. Assoc. 2011, 20, 131–134. [Google Scholar]
- Naoe, T.; Hasebe, A.; Horiuchi, R.; Makita, Y.; Okazaki, Y.; Yasuda, K. Development of tissue conditioner containing cetylpyridinium chloride montmorillonite as new antimicrobial agent: Pilot study on antimicrobial activity and biocompatibility. J. Prosthodont. Res. 2020, 64, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Mitwalli, H.; AlSahafi, R.; Albeshir, E.G.; Dai, Q.; Sun, J.; Oates, T.W.; Melo, M.A.S.; Xu, H.H.; Weir, M.D. Novel nano calcium fluoride remineralizing and antibacterial dental composites. J. Dent. 2021, 113, 103789. [Google Scholar] [CrossRef] [PubMed]
RBDC Type | Manufacturer | Batch No. | Classification | Resin | Filler | Particle Size |
---|---|---|---|---|---|---|
Filtek Z250™ | 3M ESPE; USA | NA34552 | Microhybrid | BisGM A UDMA BisEMA TEGDM A | Zirconia/silica; 84.5 %wt, 60 volume% | 0.01 µm to 3.5 µm |
Filtek Z350 Flow™ | 3M ESPE; USA | NA73575 | Nanohybrid | BisGMA BisEMA TEGDM A | Zirconia/silica and silica; 65 %wt, 55 %vol | 0.6 to 20 µm |
Universal RBDC | Flowable RBDC | ||||||
---|---|---|---|---|---|---|---|
Time (Day) | 1 | 30 | 90 | Time (Day) | 1 | 30 | 90 |
Conc. | Conc. | ||||||
0% | 00 a | 00 a | 00 a | 0% | 00 a | 00 a | 00 a |
2% | 22.4± 0.8 b | 20.4± 1.1 b | 18.8± 0.8 b | 2% | 33.4± 1.1 b | 29.0 ± 2.0 b | 26.8 ± 1.3 b |
4% | 29.2± 0.8 c | 26.2± 0.8 c | 22.8± 1.9 c | 4% | 35.8 ± 0.8 c | 34.6 ± 1.1 c | 31.2 ± 1.3 c |
CHX | 37.4 ± 1.7 c | 37.1 ± 1.8 d | 36.5 ± 2.2 d | CHX | 37.4 ± 1.1 c | 37.5 ± 1.5 d | 37.5 ± 1.5 d |
Universal RBDC | Flowable RBDC | ||||||
---|---|---|---|---|---|---|---|
Time (Day) | 1 | 30 | 90 | Time (Day) | 1 | 30 | 90 |
Conc. | Conc. | ||||||
0% | 7.5 × 10−4 ± 0.15 a | 7.3 × 10−4 ± 0.1 a | 7.4 × 10−4 ± 0.1 a | 0% | 1.0 × 10−3 ± 1.1 ac | 1.5 × 10−3 ± 1.1 a | 1.3 × 10−3 ± 1.1 a |
2% | 4.0 × 10−4 ± 1.5 b | 3.9 × 10−4 ± 0.7 b | 4.0 × 10−4 ± 0.9 b | 2% | 3.5 × 10−4 ± 1.3 b | 3.6 × 10−4 ± 1.3 a | 3.7 × 10−4 ± 1.3 a |
4% | 00 c | 00 c | 00 c | 4% | 00 a,c | 00 c | 00 c |
CHX | 7.3 × 10−5 ± 0.1 c | 7.3 × 10−5 ± 0.2 c | 7.3 × 10−5 ± 0.2 c | CHX | 7.3 × 10−5 ± 0.1 a | 7.0 × 10−5 ± 0.1 a | 7.2 × 10−5 ± 0.1 a |
Universal RBDC | Flowable RBDC | ||||||
---|---|---|---|---|---|---|---|
Time (Day) | 1 | 30 | 90 | Time (Day) | 1 | 30 | 90 |
Conc. | Conc. | ||||||
0% | 72.1 ± 1.2 a | 71.8 ± 1.1 a | 63.4 ± 1.5 a | 0% | 48.1 ± 0.7 a | 46.3 ± 0.8 a | 41.2 ± 0.8 a |
2% | 71.2 ± 1.1 a | 70.9 ± 1.5 a | 59.0 ± 0.7 b | 2% | 46.2 ± 0.8 a | 45.7 ± 1.1 a | 35.9 ± 0.9 b |
4% | 70.1 ± 1.2 a | 60.0 ± 0.8 b | 54.8 ± 1.1 c | 4% | 43.0 ± 2.0 b | 41.2 ± 0.8 b | 32.9 ± 0.9 c |
CHX | 72.1 ± 1.2 a | 71.8 ± 1.1 a | 63.4 ± 1.5 a | CHX | 48.1 ± 0.7 a | 46.3 ± 0.8 a | 41.2 ± 0.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Amin, F.; Amin, R.; Kumar, N. Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites. Polymers 2024, 16, 588. https://doi.org/10.3390/polym16050588
Khan S, Amin F, Amin R, Kumar N. Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites. Polymers. 2024; 16(5):588. https://doi.org/10.3390/polym16050588
Chicago/Turabian StyleKhan, Sara, Faiza Amin, Rafat Amin, and Naresh Kumar. 2024. "Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites" Polymers 16, no. 5: 588. https://doi.org/10.3390/polym16050588
APA StyleKhan, S., Amin, F., Amin, R., & Kumar, N. (2024). Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites. Polymers, 16(5), 588. https://doi.org/10.3390/polym16050588