The Effect of Polyacrylate Emulsion Coating with Unmodified and Modified Nano-TiO2 on Weathering Resistance of Untreated and Heat-Treated Wood
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Color Change
3.2. Gloss Change
3.3. Surface Hardness and Dry Film Thickness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hon, D. Photochemistry of Wood. In Wood and Cellulosic Chemistry; Hon, D.N.-S., Shiraishi, N., Eds.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Evans, P.D.; Michell, A.J.; Schmalzl, K.J. Studies of the Degradation and Protection of Wood Surfaces. Wood Sci.Technol. 1992, 26, 151–163. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Heat-Treated Wood as a Substrate for Coatings, Weathering of Heat-Treated Wood, and Coating Performance on Heat-Treated Wood. Adv. Mater. Sci. Eng. 2019, 2019, 8621486. [Google Scholar] [CrossRef]
- Srinivas, K.; Pandey, K.K. Photodegradation of Thermally Modified Wood. J. Photochem. Photobiol. B Biol. 2012, 117, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Altgen, M.; Militz, H. Photodegradation of Thermally-Modified Scots Pine and Norway Spruce Investigated on Thin Micro-Veneers. Eur. J. Wood Prod. 2016, 74, 185–190. [Google Scholar] [CrossRef]
- Ekstedt, J. Studies on the Barrier Properties of Exterior Wood Coatings. Doctoral Thesis, KTH- Royal Institute of Technology Department of Civil and Architectural Engineering Division of Building Materials, Stockholm, Sweden, 2002. [Google Scholar]
- Miklečić, J.; Turkulin, H.; Jirouš-Rajković, V. Weathering Performance of Surface of Thermally Modified Wood Finished with Nanoparticles-Modified Waterborne Polyacrylate Coatings. Appl. Surf. Sci. 2017, 408, 103–109. [Google Scholar] [CrossRef]
- Deka, M.; Petrič, M. Photo-Degradation of Water Borne Acrilic Coated Modified and Non-Modified Wood during Artificial Light Exposure. BioResources 2008, 3, 346–362. [Google Scholar] [CrossRef]
- Godnjavec, J.; Znoj, B.; Venturini, P.; Žnidaršič, A. The Application of Rutile Nano—Crystalline Titanium Dioxide as UV Absorber. Inf. Midem 2010, 40, 6–9. [Google Scholar]
- Miklečić, J.; Blagojević, S.L.; Petrič, M.; Jirouš-Rajković, V. Influence of TiO2 and ZnO Nanoparticles on Properties of Waterborne Polyacrylate Coating Exposed to Outdoor Conditions. Prog. Org. Coat. 2015, 89, 67–74. [Google Scholar] [CrossRef]
- Fufa, S.M.; Jelle, B.P.; Hovde, P.J.; Rørvik, P.M. Coated Wooden Claddings and the Influence of Nanoparticles on the Weathering Performance. Prog. Org. Coat. 2012, 75, 72–78. [Google Scholar] [CrossRef]
- Godnjavec, J.; Znoj, B.; Vince, J.; Steinbucher, M.; Venturini, P. Stabilization of Rutile TiO2 Nanoparticles with Glymo in Polyacrylic Clear Coating. Mater. Technol. 2012, 46, 19–24. [Google Scholar]
- Veronovski, N.; Verhovšek, D.; Godnjavec, J. The Influence of Surface-Treated Nano-TiO2 (Rutile) Incorporation in Water-Based Acrylic Coatings on Wood Protection. Wood Sci. Technol. 2013, 47, 317–328. [Google Scholar] [CrossRef]
- Schaller, C.; Rogez, D. New Approaches in Wood Coating Stabilization. J. Coat Technol. Res. 2007, 4, 401–409. [Google Scholar] [CrossRef]
- Hernandez, V.; Morales, C.; Sagredo, N.; Perez-Gonzalez, G.; Romero, R.; Contreras, D. Radical Species Production and Color Change Behavior of Wood Surfaces Treated with Suppressed Photoactivity and Photoactive TiO2 Nanoparticles. Coatings 2020, 10, 1033. [Google Scholar] [CrossRef]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental Trends in Polymer Nanocomposites—A Review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Park, O.K.; Kang, Y.S.; Jo, B.G. Synthesis of TiO2 Nanoparticles Coated with SiO2 for Suppression of Photocatalytic Activity and Increased Dispersion Stability. J. Ind. Eng. Chem. 2004, 10, 733–738. [Google Scholar]
- Godnjavec, J.; Zabret, J.; Znoj, B.; Skale, S.; Veronovski, N.; Venturini, P. Investigation of Surface Modification of Rutile TiO2 Nanoparticles with SiO2/Al2O3 on the Properties of Polyacrylic Composite Coating. Prog. Org. Coat. 2014, 77, 47–52. [Google Scholar] [CrossRef]
- Veronovski, N.; Lešnik, M.; Verhovšek, D. Alumina Surface Treated Pigmentary Titanium Dioxide with Suppressed Photoactivity. J. Coat. Sci. Technol. 2015, 1, 51–58. [Google Scholar] [CrossRef]
- Guo, G.; Yu, J.; Luo, Z.; Zhou, L.; Liang, H.; Luo, F.; Qian, Z. Synthesis and Characterization of Poly(Methyl Methacrylate–Butyl Acrylate)/Nano-Titanium Oxide Composite Particles. J. Nanosci. Nanotechnol. 2011, 11, 4923–4928. [Google Scholar] [CrossRef]
- Wang, C.; Sheng, X.; Xie, D.; Zhang, X.; Zhang, H. High-Performance TiO 2 /Polyacrylate Nanocomposites with Enhanced Thermal and Excellent UV-Shielding Properties. Prog. Org. Coat. 2016, 101, 597–603. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Shentu, B. Effect of Surface Modification of Titanium Dioxide on the UV-C Aging Behavior of Silicone Rubber. J. Appl. Polym. Sci. 2019, 136, 47170. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Nguyen, T.-D.; Vu, D.-T.; Dinh, D.-P.; Nguyen, A.-H.; Ly, T.-N.-L.; Dao, P.-H.; Nguyen, T.-L.; Bach, L.-G.; Thai, H. Modification of Titanium Dioxide Nanoparticles with 3-(Trimethoxysilyl)Propyl Methacrylate Silane Coupling Agent. J. Chem. 2020, 2020, 1381407. [Google Scholar] [CrossRef]
- Chinh, N.T.; Mai, T.T.; Hung, D.P.; Hiep, N.A.; Trang, N.T.T.; Trung, T.H.; Thai, N.X.; Toan, D.H.; Binh, D.T.M.; Hoang, T. Characteristics of Organic Titanate Modified Titanium Dioxide Nanoparticles and Its Dispersibility in Acrylic Emulsion Coating. Vietnam. J. Chem. 2022, 60, 116–124. [Google Scholar]
- Zeljko, M.; Blagojević, S.L.; Bulatović, V.O. The Role of Titanium Dioxide Surface Modification on UV Protective Properties of Eco-Friendly PA Coating. Prog. Org. Coat. 2023, 174, 107326. [Google Scholar] [CrossRef]
- EN ISO 16474-2:2013; Paints and Varnishes: Methods of Exposure to Laboratory Light Sources Part 2: Xenon-Arc Lamps. ISO: Geneva, Switzerland, 2013.
- Pazokifard, S.; Esfandeh, M.; Mirabedini, S.M.; Mohseni, M.; Ranjbar, Z. Investigating the Role of Surface Treated Titanium Dioxide Nanoparticles on Self-Cleaning Behavior of an Acrylic Facade Coating. J. Coat. Technol. Res. 2013, 10, 175–187. [Google Scholar] [CrossRef]
- Weldon, D.G. Failure Analysis of Paints and Coatings, Revised Edition; John Wiley & Sons, Ltd: Chichester, UK, 2009; ISBN 978-0-470-74467-3. [Google Scholar]
- Podgorski, L.; Malassenet, L.; Reynaud, C. Variation in Coating Hardness during the EN 927-6 Weathering Test: Influence of Pigmentation. In Proceedings of the The International Research Group on Wood Protection, 47th Annual Meeting, Lisbon, Portugal, 15 May 2016. [Google Scholar]
- Baysal, E.; Toker, H.; Türkoğlu, T.; Gündüz, A.; Altay, Ç.; Küçüktüvek, M.; Peker, H. Weathering Characteristics of Impregnated and Coated Calabrian Pine Wood. Maderas. Cienc. Tecnol. 2021, 23, 1–10. [Google Scholar] [CrossRef]
- Ayata, Ü.; Çakicier, N. Determination of Pendulum Hardness (König Method) Values against Artificial Weathering in Water-Based Varnishes Applied to Some Wood Species after Heat Treatment (ThermoWood). Drewno. Prace Naukowe. Doniesienia. Komun. 2021, 64, 45–61. [Google Scholar] [CrossRef]
- Ma, X.; Qiao, Z.; Huang, Z.; Jing, X. The Dependence of Pendulum Hardness on the Thickness of Acrylic Coating. J. Coat. Technol. Res. 2013, 10, 433–439. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Gao, J.; Zhao, Q. Ageing Behavior of Acrylic Polyurethane Varnish Coating in Artificial Weathering Environments. Prog. Org. Coat. 2009, 65, 504–509. [Google Scholar] [CrossRef]
- Wood, K.A. Optimizing the Exterior Durability of New Fluoropolymer Coatings. Prog. Org. Coat. 2001, 43, 207–213. [Google Scholar] [CrossRef]
Monomers | Methyl methacrylate Butyl acrylate |
Nano-filler | Titanium dioxide (average particle size of 30 nm) |
Dispersion medium | Demineralized water |
Emulsifier | Disponil FES 77 (Sodium dodecyl sulfate) |
Initiator | Ammonium persulfate |
Type of Emulsion Coating | Mark |
---|---|
Without nanoparticles | PA |
With 0.75% nano-TiO2 without modification | PA + DW |
With 0.75% nano-TiO2 modified with AIBA | PA + DW AIBA |
With 0.75% nano-TiO2 modified with AMPTS | PA + DW AMPTS |
Exposure Period | Irradiance at 340 nm W/(m2⋅nm) | Black-Standard Temperature °C | Chamber Temperature °C | Relative Humidity % |
---|---|---|---|---|
102 min dry | 0.51 ± 0.02 | 65 ± 3 | 38 ± 3 | 50 ± 10 |
18 min water spray | 0.51 ± 0.02 | - | - | - |
Type of Emulsion | Untreated Ash Wood | Heat-Treated Ash Wood | ||||||
---|---|---|---|---|---|---|---|---|
ΔE* | ΔL* | Δa* | Δb* | ΔE* | ΔL* | Δa* | Δb* | |
PA | 7.0 (1.30) | −4.1 (1.13) | 2.9 (1.42) | 4.8 (0.25) | 8.3 (0.71) | −7.8 (0.87) | 2.5 (0.24) | 0.3 (1.17) |
PA + DW | 5.0 (0.47) | −2.4 (0.30) | 1.5 (0.25) | 4.1 (0.40) | 7.0 (0.74) | −6.2 (0.62) | 1.9 (0.31) | −2.6 (1.22) |
PA + DW AIBA | 3.6 (0.99) | −1.3 (0.35) | 1.6 (0.21) | −2.9 (1.16) | 18.5 (1.73) | −1.4 (0.80) | −0.8 (0.48) | −18.5 (1.75) |
PA + DW AMPTS | 4.3 (0.50) | −3.2 (0.50) | 2.6 (0.18) | 0.7 (0.58) | 8.7 (1.09) | −5.5 (0.82) | 1.3 (0.41) | −6.6 (1.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklečić, J.; Zeljko, M.; Lučić Blagojević, S.; Jirouš-Rajković, V. The Effect of Polyacrylate Emulsion Coating with Unmodified and Modified Nano-TiO2 on Weathering Resistance of Untreated and Heat-Treated Wood. Polymers 2024, 16, 511. https://doi.org/10.3390/polym16040511
Miklečić J, Zeljko M, Lučić Blagojević S, Jirouš-Rajković V. The Effect of Polyacrylate Emulsion Coating with Unmodified and Modified Nano-TiO2 on Weathering Resistance of Untreated and Heat-Treated Wood. Polymers. 2024; 16(4):511. https://doi.org/10.3390/polym16040511
Chicago/Turabian StyleMiklečić, Josip, Martina Zeljko, Sanja Lučić Blagojević, and Vlatka Jirouš-Rajković. 2024. "The Effect of Polyacrylate Emulsion Coating with Unmodified and Modified Nano-TiO2 on Weathering Resistance of Untreated and Heat-Treated Wood" Polymers 16, no. 4: 511. https://doi.org/10.3390/polym16040511
APA StyleMiklečić, J., Zeljko, M., Lučić Blagojević, S., & Jirouš-Rajković, V. (2024). The Effect of Polyacrylate Emulsion Coating with Unmodified and Modified Nano-TiO2 on Weathering Resistance of Untreated and Heat-Treated Wood. Polymers, 16(4), 511. https://doi.org/10.3390/polym16040511