Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
2.3.1. Differential Scanning Calorimetry (DSC)
2.3.2. Thermal Conductivity
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Electrical Conductivity
2.3.5. Viscoelastic Behavior
2.3.6. X-ray Diffraction (XRD)
2.3.7. Mechanical Properties
2.3.8. Light-to-Energy Conversion and Energy Storage
2.3.9. Light-to-Temperature Energy Conversion
3. Results and Discussion
3.1. Rheological Properties
3.2. Morphology
3.3. Crystallization Behavior of FPCMs
3.4. Mechanical Properties
3.5. Thermal Conductivity
3.6. Light-to-Heat Conversion
3.7. Thermal Cycling Stability of FPCMs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, C.P.; Bai, L.; Shao, Y.; Bao, R.Y.; Liu, Z.Y.Y.; Yang, M.B.; Chen, J.; Ni, H.Y.; Yang, W. A Facile Route to Fabricate Highly Anisotropic Thermally Conductive Elastomeric POE/NG Composites for Thermal Management. Adv. Mater. Interfaces 2018, 5, 1700946. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhang, X. An Innovative Graphene-based Phase Change Composite Constructed by Syneresis with High Thermal Conductivity for Efficient Solar-Thermal Conversion and Storage. J. Mater. Sci. Technol. 2024, 178, 179–187. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.; Zhou, S.T.; Zou, H.W.; Liang, M. A Concurrent Enhancement of Both In-Plane and Through-Plane Thermal Conductivity of Injection Molded Polycarbonate/Boron Nitride/Alumina Composites by Constructing a Dense Filler Packing Structure. Macromol. Mater. Eng. 2021, 306, 2100267. [Google Scholar] [CrossRef]
- Bing, N.; Wu, G.; Yang, J.; Chen, L.; Xie, H.; Yu, W. Thermally Induced Flexible Phase Change Composites with Enhanced Thermal Conductivity for Solar Thermal Conversion and Storage. Sol. Energy Mater. Sol. Cells 2022, 240, 111684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Qiu, J.; Jin, X.; Umair, M.M.; Lu, R.; Zhang, S.F.; Tang, B.T. Ag-Graphene/PEG Composite Phase Change Materials for Enhancing Solar-Thermal Energy Conversion and Storage Capacity. Appl. Energy 2019, 237, 83–90. [Google Scholar] [CrossRef]
- Su, T.Y.; Liu, N.S.; Lei, D.D.; Wang, L.X.; Ren, Z.Q.; Zhang, Q.X.; Su, J.; Zhang, Z.; Gao, Y.H. Flexible MXene/Bacterial Cellulose Film Sound Detector Based on Piezoresistive Sensing Mechanism. ACS. Nano 2022, 16, 8461–8471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zheng, X.; Fang, Y.; Zhang, Z.; Gao, X.; Xie, N. Flexible Composite Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Thermal Management. J. Energy Storage 2023, 11, 18832–18842. [Google Scholar]
- Lin, Y.; Kang, Q.; Liu, Y.; Zhu, Y.; Jiang, P.; Mai, Y.W.; Huang, X. Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Lett. 2023, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Deng, J.; Wu, Z.; Li, X.; Wang, C. Experimental Investigation on BN-based Flexible Composite Phase-Change Material for Battery Module. Front. Energy Res. 2022, 10, 801341. [Google Scholar] [CrossRef]
- Tang, Z.D.; Gao, H.Y.; Chen, X.; Zhang, Y.F.; Li, A.; Wang, G. Advanced multifunctional composite phase change materials based on photo-responsive materials. Nano Energy 2021, 80, 105454. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Liu, L.; Lu, Z.; Sanjayan, J.G.; Duan, W.H. Development of Granular Expanded Perlite/Paraffin Phase Change Material Composites and Prevention of Leakage. Sol. Energy 2016, 137, 179–188. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Mai, J.; Wang, N.; Zhang, N. Super-Elastic Smart Phase Change Material (SPCM) for Thermal Energy Storage. Chem. Eng. J. 2021, 411, 128482. [Google Scholar] [CrossRef]
- Kou, Y.; Sun, K.; Luo, J.; Zhou, F.; Huang, H.; Wu, Z.S.; Shi, Q. An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements. Energy Storage Mater. 2021, 34, 508–514. [Google Scholar] [CrossRef]
- Shi, J.; Qin, M.; Aftab, W.; Zou, R. Flexible Phase Change Materials for Thermal Energy Storage. Energy Storage. Mater. 2021, 41, 321–342. [Google Scholar] [CrossRef]
- He, L.; Wang, H.; Yang, F.; Zhu, H. Preparation and Properties of Polyethylene Glycol/Unsaturated Polyester Resin/Graphene Nanoplates Composites as Form-Stable Phase Change Materials. Thermochim. Acta 2018, 665, 43–52. [Google Scholar] [CrossRef]
- Zhou, S.T.; Yu, L.; Song, X.; Chang, J.; Zou, H.W.; Liang, M. Preparation of Highly Thermally Conducting Polyamide 6/Graphite Composites via Low-Temperature In Situ Expansion. J. Appl. Polym. Sci. 2013, 131, 131. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, Y.X.; Jia, Y.T.; Fang, G.Y. Improved thermal properties of stearyl alcohol/high density polyethylene/expanded graphite composite phase change materials for building thermal energy storage. Energy Build. 2017, 153, 41–49. [Google Scholar] [CrossRef]
- Tao, Z.; Chen, X.; Yang, M.; Xu, X.; Wang, G. Three-Dimensional rGO@ Sponge Framework/Paraffin Wax Composite Shape-Stabilized Phase Change Materials for Solar-Thermal Energy Conversion and Storage. Sol. Energy Mater. Sol. Cells 2020, 215, 110600. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Shi, Y. Preparation of Polyvinyl Chloride Capsules for Encapsulation of Paraffin by Coating Multiple Organic/Inorganic Layers. J. Taiwan. Inst. Chem. Eng. 2017, 77, 177–186. [Google Scholar] [CrossRef]
- Yang, J.; Jia, Y.L.; Bing, N.C.; Wang, L.L.; Xie, H.Q.; Yu, W. Reduced Graphene Oxide and Zirconium Carbide Co-Modified Melamine Sponge/Paraffin Wax Composites as New Form-Stable Phase Change Materials for Photothermal Energy Conversion and Storage. Appl. Therm. Eng. 2019, 163, 114412. [Google Scholar] [CrossRef]
- Bing, N.; Yang, J.; Gao, H.; Xie, H.; Yu, W. Unsaturated Polyester Resin Supported Form-Stable Phase Change Materials with Enhanced Thermal Conductivity for Solar Energy Storage and Conversion. Renew. Energy 2021, 173, 926–933. [Google Scholar] [CrossRef]
- Li, X.; Sheng, X.; Fang, Y.; Hu, X.; Gong, S.; Sheng, M.; Qu, J. Wearable Janus-Type Film with Integrated All-Season Active/Passive Thermal Management, Thermal Camouflage, and Ultra-High Electromagnetic Shielding Efficiency Tunable by Origami Process. Adv. Funct. Mater. 2023, 33, 2212776. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.; Zhou, S.; Zou, H.; Liang, M. Highly Thermally Conductive Yet Electrically Insulative Polycarbonate Composites with Oriented Hybrid Networks Assisted by High Shear Injection Molding. Macromol. Mater. Eng. 2022, 307, 2100632. [Google Scholar] [CrossRef]
- Qi, G.; Yang, J.; Bao, R.; Xia, D.; Min, C.; Wei, Y.; Yang, M.; Wei, D. Hierarchical Graphene Foam-Based Phase Change Materials with Enhanced Thermal Conductivity and Shape Stability for Efficient Solar-To-Thermal Energy Conversion and Storage. Nano Res. 2017, 10, 802–813. [Google Scholar] [CrossRef]
- Ishida, H.; Rimdusit, S. Very High Thermal Conductivity Obtained by Boron Nitride-Filled Polybenzoxazine. Thermochim. Acta 1998, 320, 177–186. [Google Scholar] [CrossRef]
- Sharma, R.; Ganesan, P.; Tyagi, V.; Metselaar, H.; Sandaran, S. Developments in Organic Solid–Liquid Phase Change Materials and Their Applications in Thermal Energy Storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, V. Analysis of Mechanical, Thermal, Electrical and EMI Shielding Properties of Graphite/Carbon Fiber Reinforced Polypropylene Composites Prepared Via a Twin Screw Extruder. J. Appl. Polym. Sci. 2022, 139, 51444. [Google Scholar] [CrossRef]
- Jia, Z.; Kou, K.; Yin, S.; Feng, A.; Zhang, C.; Liu, X.; Wu, G. Magnetic Fe Nanoparticle to Decorate N Dotted C as An Exceptionally Absorption-Dominate Electromagnetic Shielding Material. Compos. Part B Eng. 2020, 189, 107895. [Google Scholar] [CrossRef]
- Jia, Z.; Kong, M.; Yu, B.; Ma, Y.; Pan, J.; Wu, G. Tunable Co/ZnO/C@ MWCNTs Based on Carbon Nanotube-Coated MOF with Excellent Microwave Absorption Properties. J. Mater. Sci. Technol. 2022, 127, 153–163. [Google Scholar] [CrossRef]
- Sun, C.; Jia, Z.; Xu, S.; Hu, D.; Zhang, C.; Wu, G. Synergistic Regulation of Dielectric-Magnetic Dual-Loss and Triple Heterointerface Polarization Via Magnetic MXene for High-Performance Electromagnetic Wave Absorption. J. Mater. Sci. Technol. 2022, 113, 128–137. [Google Scholar] [CrossRef]
- Jang, M.G.; Ryu, S.C.; Juhn, K.J.; Kim, S.K.; Kim, W.N. Effects of Carbon Fiber Modification with Multiwall CNT on The Electrical Conductivity and EMI Shielding Effectiveness of Polycarbonate/Carbon Fiber/CNT Composites. J. Appl. Polym. Sci. 2019, 136, 47302. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, S.; Lei, X.; Zou, H.; Liang, M. Enhanced Thermal Conductivity of Polycarbonate-Based Composites by Constructing A Dense Filler Packing Structure Consisting of Hybrid Boron Nitride and Flake Graphite. J. Appl. Polym. Sci. 2022, 139, e52895. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhang, Y.F.; Fang, H.M.; Ding, T.P.; Li, J.L.; Bai, S.L. Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Compos. Part A Appl. Sci. Manuf. 2018, 112, 57–63. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Dai, L.; Wang, W.; Wu, H. Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos. Sci. Technol. 2019, 184, 107862. [Google Scholar] [CrossRef]
- Feng, C.P.; Bai, L.; Bao, R.Y.; Liu, Z.Q.; Yang, M.B.; Chen, J.; Yang, W. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv. Compos. Hybrid Mater. 2018, 1, 160–167. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, S.; Li, Y.; Zhang, X.; Su, J.; Li, H.; Tang, D. Strain-sensing behavior of flexible polypropylene/poly (ethylene-co-octene)/multiwalled carbon nanotube nanocomposites under cyclic tensile deformation. Polym. Compos. 2022, 43, 7–20. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Yang, Q.; Ai, T.; Zhou, S. Crystallization and Microstructure evolution of microinjection molded isotactic polypropylene with the assistance of poly(Ethylene Terephthalate). Polymers 2020, 12, 219. [Google Scholar] [CrossRef]
- Yang, J.; Tang, L.S.; Bao, R.Y.; Bai, L.; Liu, Z.Y.; Xie, B.H.; Yang, M.B.; Yang, W. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol. Energy Mater. Sol. Cells 2018, 174, 56–64. [Google Scholar] [CrossRef]
- Zhao, X.G.; Tang, Y.L.; Wang, J.; Li, Y.H.; Li, D.K.; Zuo, X.C.; Yang, H.M. Visible Light Locking in Mineral-Based Composite Phase Change Materials Enabling High Photothermal Conversion and Storage. ACS Appl. Mater. Interfaces 2023, 15, 49132–49145. [Google Scholar] [CrossRef]
- Sun, K.Y.; Dong, H.S.; Kou, Y.; Yang, H.N.; Liu, H.Q.; Li, Y.G.; Shi, Q. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 2021, 419, 129637. [Google Scholar] [CrossRef]
- Cai, Y.X.; Zhang, N.; Cao, X.L.; Yuan, Y.P.; Zhang, Z.L.; Yu, N.Y. Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage. Sol. Energy Mater. Sol. Cells 2023, 252, 112176. [Google Scholar] [CrossRef]
- Zheng, J.L.; Deng, Y.; Liu, Y.L.; Wu, F.Z.; Wang, W.H.; Wang, H.; Sun, S.Y.; Lu, J. Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications. Chem. Eng. J. 2023, 453, 139727. [Google Scholar] [CrossRef]
Designation | Composition | |||
---|---|---|---|---|
POE (wt%) | PW (wt%) | GNPs (wt%) | Al2O3 (wt%) | |
PPW | 70 | 30 | 0 | 0% |
PPWG5 | 70 | 30 | 5 | 0 |
PPWG5Al10 | 70 | 30 | 5 | 10 |
PPWG5Al20 | 70 | 30 | 5 | 20 |
PPWG5Al30 | 70 | 30 | 5 | 30 |
PPWG5Al40 | 70 | 30 | 5 | 40 |
PPWG5Al40 | 70 | 30 | 0 | 40 |
Samples | Melting Temperature (◦C) | Melting Enthalpy (J/g) | Theoretical Value (J/g) |
---|---|---|---|
PPW | 50.7 | 64.9 | 66.4 |
PPWG5 | 50.1 | 48.7 | 49.1 |
PPWG5Al10 | 49.9 | 53.4 | 57.7 |
PPWG5Al20 | 50.6 | 52.8 | 53.1 |
PPWG5Al30 | 49.9 | 64.6 | 66.4 |
PPWG5Al40 | 50.3 | 48.3 | 49.1 |
PPWAl40 | 50.5 | 47.4 | 49.4 |
PW | 53.7 | 221.2 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Wang, C.; Wang, K.; Xue, R.; Liu, X.; Yang, Q. Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications. Polymers 2024, 16, 362. https://doi.org/10.3390/polym16030362
Tian J, Wang C, Wang K, Xue R, Liu X, Yang Q. Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications. Polymers. 2024; 16(3):362. https://doi.org/10.3390/polym16030362
Chicago/Turabian StyleTian, Jie, Chouxuan Wang, Kaiyuan Wang, Rong Xue, Xinyue Liu, and Qi Yang. 2024. "Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications" Polymers 16, no. 3: 362. https://doi.org/10.3390/polym16030362
APA StyleTian, J., Wang, C., Wang, K., Xue, R., Liu, X., & Yang, Q. (2024). Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications. Polymers, 16(3), 362. https://doi.org/10.3390/polym16030362