Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of PCL Nanofibers
2.2. Chip Design and Fabrication
2.3. Chip Performance Test and Characterization
2.4. Cell Culture and Characterization
3. Results and Discussion
3.1. The HOC with Integrated the Multi-Layer Nanofiber Scaffold
3.2. Comparison of Seeding Methods within the HOC
3.3. Myocardial Tissue Formed within the HOCs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hesselbarth, R.; Esser, T.; Roshanbinfar, K.; Struefer, S.; Schubert, D.; Engel, F. Enhancement of engineered cardiac tissues by promotion of hiPSC-cardiomyocyte proliferation. Eur. Heart J. 2021, 42, ehab724.3234. [Google Scholar] [CrossRef]
- Li, J.; Hua, Y.; Miyagawa, S.; Zhang, J.; Li, L.; Liu, L.; Sawa, Y. hiPSC-derived cardiac tissue for disease modeling and drug discovery. Int. J. Mol. Sci. 2020, 21, 8893. [Google Scholar] [CrossRef] [PubMed]
- Hnatiuk, A.P.; Briganti, F.; Staudt, D.W.; Mercola, M. Human iPSC modeling of heart disease for drug development. Cell Chem. Biol. 2021, 28, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gharanei, M.; Shafaattalab, S.; Sangha, S.; Gunawan, M.; Laksman, Z.; Hove-Madsen, L.; Tibbits, G.F. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2022, 203, 364–377. [Google Scholar] [CrossRef]
- Cukierman, E.; Pankov, R.; Stevens, D.R.; Yamada, K.M. Taking cell-matrix adhesions to the third dimension. Science 2001, 294, 1708–1712. [Google Scholar] [CrossRef]
- Yang, X.; Pabon, L.; Murry, C.E. Engineering adolescence: Maturation of human pluripotent stem cell–derived cardiomyocytes. Circ. Res. 2014, 114, 511–523. [Google Scholar] [CrossRef]
- Vreeker, A.; Van Stuijvenberg, L.; Hund, T.J.; Mohler, P.J.; Nikkels, P.G.; Van Veen, T.A. Assembly of the cardiac intercalated disk during pre-and postnatal development of the human heart. PLoS ONE 2014, 9, e94722. [Google Scholar] [CrossRef]
- Shao, C.; Chi, J.; Chen, Z.; Sun, L.; Shang, L.; Zhao, Y.; Ye, F. Nano-imprinted anisotropic structural color graphene films for cardiomyocytes dynamic displaying. Mater. Today 2021, 51, 117–125. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Nasiri, R.; Fang, J.; Jiang, X.; Wang, C.; Qu, M.; Ling, H.; Chen, Y.; Xue, Y. Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissue-on-a-Chip for Drug Screening. Small Methods 2020, 4, 2000438. [Google Scholar] [CrossRef]
- Ahmadi, P.; Nazeri, N.; Derakhshan, M.A.; Ghanbari, H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int. J. Biol. Macromol. 2021, 180, 590–598. [Google Scholar] [CrossRef]
- Léger, L.; Aliakbarshirazi, S.; Zahedifar, P.; Aalders, J.; Van Der Voort, P.; De Geyter, N.; Morent, R.; van Hengel, J.; Ghobeira, R. Combinatorial effects of surface plasma-treating and aligning PCL/chitosan nanofibers on the behavior of stem cell-derived cardiomyocytes for cardiac tissue engineering. Appl. Surf. Sci. 2024, 655, 159680. [Google Scholar] [CrossRef]
- Kanzaki, Y.; Terasaki, F.; Okabe, M.; Fujita, S.; Katashima, T.; Otsuka, K.; Ishizaka, N. Three-dimensional architecture of cardiomyocytes and connective tissue in human heart revealed by scanning electron microscopy. Am. Heart Assoc. 2010, 19, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tedder, M.E.; Perez, C.E.; Wang, G.; de Jongh Curry, A.L.; To, F.; Elder, S.H.; Williams, L.N.; Simionescu, D.T.; Liao, J. Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J. Mater. Sci. Mater. Med. 2012, 23, 1835–1847. [Google Scholar] [CrossRef] [PubMed]
- Gill, E.L.; Willis, S.; Gerigk, M.; Cohen, P.; Zhang, D.; Li, X.; Huang, Y.Y.S. Fabrication of designable and suspended microfibers via low-voltage 3D micropatterning. ACS Appl. Mater. Interfaces 2019, 11, 19679–19690. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, X.; Shafiq, M.; Myles, G.; Radacsi, N.; Mo, X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv. Fiber Mater. 2022, 4, 959–986. [Google Scholar] [CrossRef]
- Liu, L.; Xu, F.; Jin, H.; Qiu, B.; Yang, J.; Zhang, W.; Gao, Q.; Lin, B.; Chen, S.; Sun, D. Integrated manufacturing of suspended and aligned nanofibrous scaffold for structural maturation and synchronous contraction of HiPSC-derived cardiomyocytes. Bioengineering 2023, 10, 702. [Google Scholar] [CrossRef]
- Valls-Margarit, M.; Iglesias-García, O.; Di Guglielmo, C.; Sarlabous, L.; Tadevosyan, K.; Paoli, R.; Comelles, J.; Blanco-Almazán, D.; Jiménez-Delgado, S.; Castillo-Fernández, O. Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality. Stem Cell Rep. 2019, 13, 207–220. [Google Scholar] [CrossRef]
- Yin, Q.; Zhu, P.; Liu, W.; Gao, Z.; Zhao, L.; Wang, C.; Li, S.; Zhu, M.; Zhang, Q.; Zhang, X. A conductive bioengineered cardiac patch for myocardial infarction treatment by improving tissue electrical integrity. Adv. Healthc. Mater. 2023, 12, 2201856. [Google Scholar] [CrossRef]
- Choi, S.; Lee, K.Y.; Kim, S.L.; MacQueen, L.A.; Chang, H.; Zimmerman, J.F.; Jin, Q.; Peters, M.M.; Ardoña, H.A.M.; Liu, X. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles. Nat. Mater. 2023, 22, 1039–1046. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Chen, X.; Han, M.; Xu, J.; Li, T.; Yu, L.; Qin, M.; Long, M.; Li, M. Multiscale Anisotropic Scaffold Integrating 3D Printing and Electrospinning Techniques as a Heart-on-a-Chip Platform for Evaluating Drug-Induced Cardiotoxicity (Adv. Healthcare Mater. 24/2023). Adv. Healthc. Mater. 2023, 12, 2370146. [Google Scholar] [CrossRef]
- Komosa, E.R.; Lin, W.-H.; Mahadik, B.; Bazzi, M.S.; Townsend, D.; Fisher, J.P.; Ogle, B.M. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication 2023, 16, 014101. [Google Scholar] [CrossRef] [PubMed]
- Magrofuoco, E.; Flaibani, M.; Giomo, M.; Elvassore, N. Cell culture distribution in a three-dimensional porous scaffold in perfusion bioreactor. Biochem. Eng. J. 2019, 146, 10–19. [Google Scholar] [CrossRef]
- Melchels, F.P.; Barradas, A.M.; Van Blitterswijk, C.A.; De Boer, J.; Feijen, J.; Grijpma, D.W. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 2010, 6, 4208–4217. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Lin, G.; Zhang, M. Enhanced Cell Penetration and Pluripotency Maintenance of hiPSCs in 3D Natural Chitosan Scaffolds. Macromol. Biosci. 2023, 23, 2200460. [Google Scholar] [CrossRef]
- Wang, B.; Lv, X.; Li, Z.; Yao, Y.; Yan, Z.; Sheng, J.; Chen, S. A simple method for controlling the bacterial cellulose nanofiber density in 3D scaffolds and its effect on the cell behavior. Cellulose 2019, 26, 7411–7421. [Google Scholar] [CrossRef]
- Campos Marín, A.; Brunelli, M.; Lacroix, D. Flow perfusion rate modulates cell deposition onto scaffold substrate during cell seeding. Biomech. Model. Mechanobiol. 2018, 17, 675–687. [Google Scholar] [CrossRef]
- Sobral, J.M.; Caridade, S.G.; Sousa, R.A.; Mano, J.F.; Reis, R.L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011, 7, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, S.; Shapira, A.; Feiner, R.; Dvir, T. Modular assembly of thick multifunctional cardiac patches. Proc. Natl. Acad. Sci. USA 2017, 114, 1898–1903. [Google Scholar] [CrossRef]
- Eom, S.; Park, S.M.; Hwang, D.G.; Kim, H.W.; Jang, J.; Kim, D.S. Fabrication of an align-random distinct, heterogeneous nanofiber mat endowed with bifunctional properties for engineered 3D cardiac anisotropy. Compos. Part B Eng. 2021, 226, 109336. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.G. Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures. Innovation 2023, 4, 100381. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006, 7, 2796–2805. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.; Goh, J.; Teoh, S. An introduction to biodegradable materials for tissue engineering applications. Ann. -Acad. Med. Singap. 2001, 30, 183–191. [Google Scholar] [PubMed]
- Sivan, M.; Madheswaran, D.; Asadian, M.; Cools, P.; Thukkaram, M.; Van Der Voort, P.; Morent, R.; De Geyter, N.; Lukas, D. Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surf. Coat. Technol. 2020, 399, 126203. [Google Scholar] [CrossRef]
- Huebsch, N.; Loskill, P.; Mandegar, M.A.; Marks, N.C.; Sheehan, A.S.; Ma, Z.; Mathur, A.; Nguyen, T.N.; Yoo, J.C.; Judge, L.M.; et al. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales. Tissue Eng. Part C-Methods 2015, 21, 467–479. [Google Scholar] [CrossRef]
- Cruz-Moreira, D.; Visone, R.; Vasques-Nóvoa, F.; Barros, A.S.; Leite-Moreira, A.; Redaelli, A.; Moretti, M.; Rasponi, M. Assessing the influence of perfusion on cardiac microtissue maturation: A heart-on-chip platform embedding peristaltic pump capabilities. Biotechnol. Bioeng. 2021, 118, 3128–3137. [Google Scholar] [CrossRef]
- Abulaiti, M.; Yalikun, Y.; Murata, K.; Sato, A.; Sami, M.M.; Sasaki, Y.; Fujiwara, Y.; Minatoya, K.; Shiba, Y.; Tanaka, Y. Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci. Rep. 2020, 10, 19201. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018, 556, 239–243. [Google Scholar] [CrossRef]
- Endoh, M. Force–frequency relationship in intact mammalian ventricular myocardium: Physiological and pathophysiological relevance. Eur. J. Pharmacol. 2004, 500, 73–86. [Google Scholar] [CrossRef]
- Pettinato, A.M.; Ladha, F.A.; Hinson, J.T. The cardiac sarcomere and cell cycle. Curr. Cardiol. Rep. 2022, 24, 623–630. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Xu, F.; Liu, L.; Chen, S.; Ding, Z.; Sun, D. Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds. Polymers 2024, 16, 2664. https://doi.org/10.3390/polym16182664
You Y, Xu F, Liu L, Chen S, Ding Z, Sun D. Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds. Polymers. 2024; 16(18):2664. https://doi.org/10.3390/polym16182664
Chicago/Turabian StyleYou, Yuru, Feng Xu, Lingling Liu, Songyue Chen, Zhengmao Ding, and Daoheng Sun. 2024. "Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds" Polymers 16, no. 18: 2664. https://doi.org/10.3390/polym16182664
APA StyleYou, Y., Xu, F., Liu, L., Chen, S., Ding, Z., & Sun, D. (2024). Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds. Polymers, 16(18), 2664. https://doi.org/10.3390/polym16182664