Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of M. indica Fruit Starch
2.3. Optimization of Hydrolyzed M. indica Starch
2.4. Optimization of Pre-Gelatinized M. indica Starch
2.5. Characterizations of Modified M. indica Starch
2.5.1. Flowability and Compressibility
2.5.2. Swelling Index
2.5.3. Attenuated Total Reflectance Fourier-Transformed Infrared Spectroscopy
2.5.4. Differential Scanning Calorimetry
2.6. Modified M. indica Fruit Starch as Excipient Substituent in Acetaminophen Tablets
2.7. Performance Tests
2.7.1. Hardness
2.7.2. Friability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preparation of M. indica Fruit Starch
3.2. Optimization of Hydrolyzed M. indica Fruit Starch
3.3. Optimization of Pre-Gelatinized M. indica Fruit Starch
3.4. Characterizations of the Optimized Modified M. indica Fruit Starch
3.4.1. Attenuated Total Reflection Fourier-Transformed Infrared Spectroscopy
3.4.2. Differential Scanning Calorimetry
3.5. Modified Starch Performances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics 2020, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Pockle, R.D.; Masareddy, R.S.; Patil, A.S.; Patil, P.D. A comprehensive review on pharmaceutical excipients. Ther. Deliv. 2023, 14, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-K.; Chew, N. Excipients: Powders and Solid Dosage Forms. Encycl. Pharm. Technol. 2002, 3, 1646–1655. [Google Scholar]
- Apeji, Y.E.; Kaigama, R.T.; Ibrahim, S.H.; Anyebe, S.N.; Abdussalam, A.O.; Oyi, A.R. Tableting Performance of Maize and Potato Starches Used in Combination as Binder/Disintegrant in Metronidazole Tablet Formulation. Turk. J. Pharm. Sci. 2022, 19, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, S.K. Rosin: A naturally derived excipient in drug delivery systems. Polim. Med. 2013, 43, 45–48. [Google Scholar]
- Savic, S.; Tamburic, S.; Savic, M.M. From conventional towards new—Natural surfactants in drug delivery systems design: Current status and perspectives. Expert. Opin. Drug Deliv. 2010, 7, 353–369. [Google Scholar] [CrossRef]
- Singh, P.; Mishra, G.; Dinda, S.C. Correction to: Natural Excipients in Pharmaceutical Formulations. In Evidence Based Validation of Traditional Medicines: A Comprehensive Approach; Mandal, S.C., Chakraborty, R., Sen, S., Eds.; Springer: Singapore, 2021; p. C1. [Google Scholar]
- Milanesi, M.; Runfola, A.; Guercini, S. Pharmaceutical industry riding the wave of sustainability: Review and opportunities for future research. J. Clean. Prod. 2020, 261, 121204. [Google Scholar] [CrossRef]
- de Oliveira Souza, H.; dos Santos Costa, R.; Quadra, G.R.; dos Santos Fernandez, M.A. Pharmaceutical pollution and sustainable development goals: Going the right way? Sustain. Chem. Pharm. 2021, 21, 100428. [Google Scholar] [CrossRef]
- Mishra, M.; Sharma, M.; Dubey, R.; Kumari, P.; Ranjan, V.; Pandey, J. Green synthesis interventions of pharmaceutical industries for sustainable development. Curr. Res. Green. Sustain. Chem. 2021, 4, 100174. [Google Scholar] [CrossRef]
- Daudt, R.M.; Külkamp-Guerreiro, I.C.; Cladera-Olivera, F.; Thys, R.C.S.; Marczak, L.D.F. Determination of properties of pinhão starch: Analysis of its applicability as pharmaceutical excipient. Ind. Crops Prod. 2014, 52, 420–429. [Google Scholar] [CrossRef]
- Tegtmeier, M.; Knierim, L.; Schmidt, A.; Strube, J. Green Manufacturing for Herbal Remedies with Advanced Pharmaceutical Technology. Pharmaceutics 2023, 15, 188. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.S.; Mohammadzadeh, V.; Yazdi, M.E.; Barani, M.; Rahdar, A.; Kyzas, G.Z. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021, 26, 1770. [Google Scholar] [CrossRef] [PubMed]
- Charoenthai, N.; Sanga-ngam, T.; Puttipipatkhachorn, S. Use of modified tapioca starches as pharmaceutical excipients. Pharm. Sci. Asia 2018, 45, 195–204. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharya, B.; Jamatia, T.; Sinha, B.; Das, B.; Mazumder, R.; Daule, I.; Paul, K.; Roy, A.; Choudhury, A.; et al. Efficacy of Cassava Starch in the Design of Drug Delivery Platforms: From Roots. to Polymers. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Sandhan, S.; Thombre, N.; Aher, S. Isolation and Evaluation of Starch from Musa Paradisiaca Linn. As a Binder in Tablet. Int. J. Pharm. Sci. Res. 2017, 8, 3484–3491. [Google Scholar] [CrossRef]
- Shahrim, N.A.A.; Sarifuddin, N.; Ismail, H. Extraction and Characterization of Starch from Mango Seeds. J. Phys. Conf. Ser. 2018, 1082, 012019. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Hosakote, Y.; Prabha, T.N. Mango (Mangifera indica L.), “The King of Fruits”—An Overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Patiño-Rodríguez, O.; Agama-Acevedo, E.; Ramos-Lopez, G.; Bello-Pérez, L.A. Unripe mango kernel starch: Partial characterization. Food Hydrocoll. 2020, 101, 105512. [Google Scholar] [CrossRef]
- Sarmah, J.; Choudhury, A.; Deka, H.; Ganguly, D.; Baishya, D.; Jyrwa, R. A Comprehensive Overview of Edible Natural Excipients and their Potential Use in Pharmaceutical Formulation Development. J. Young Pharm. 2023, 15, 589–594. [Google Scholar] [CrossRef]
- Henry Omoregie, E. Chemical Properties of Starch and Its Application in the Food Industry. In Chemical Properties of Starch; Martins, E., Ed.; IntechOpen: Rijeka, Croatia, 2019; p. Ch. 5. [Google Scholar]
- Grimaldi, M.; Pitirollo, O.; Ornaghi, P.; Corradini, C.; Cavazza, A. Valorization of agro-industrial byproducts: Extraction and analytical characterization of valuable compounds for potential edible active packaging formulation. Food Packag. Shelf Life 2022, 33, 100900. [Google Scholar] [CrossRef]
- Alves Henrique, M.; Silvério, H.; Flauzino Neto, W.; Pasquini, D. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manag. 2013, 121C, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Gahane, S.; Relekar, P.; Kadam, J.; Shirke, G.D.; Ranveer, D.R.; Rane, S. Development of sweet potato (Ipomoea batatas L.) and mango (Mangifera indica L.) Blended Bar. Int. J. Adv. Biochem. Res. 2024, 8, 551–557. [Google Scholar] [CrossRef]
- Kennedy, G.; Raneri, J.E.; Stoian, D.; Attwood, S.; Burgos, G.; Ceballos, H.; Ekesa, B.; Johnson, V.; Low, J.W.; Talsma, E.F. Roots, Tubers and Bananas: Contributions to Food Security. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Oxford, UK, 2019; pp. 231–256. [Google Scholar]
- Lawal, M.V. Modified Starches as Direct Compression Excipients—Effect of Physical and Chemical Modifications on Tablet Properties: A Review. Starch-Stärke 2019, 71, 1800040. [Google Scholar] [CrossRef]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wei, H.; Kou, L.; Ren, L.; Zhou, J. Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydr. Polym. 2021, 252, 117243. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, M.; Faridah, D.N.; Lioe, H.N. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review. Starch-Stärke 2018, 70, 1700028. [Google Scholar] [CrossRef]
- Yan, H.; Liu, X. Pre-gelatinized Modification of Starch. In Physical Modifications of Starch; Springer: Berlin/Heidelberg, Germany, 2018; pp. 91–102. [Google Scholar]
- Widodo, R.T.; Hassan, A.; Liew, K.B.; Ming, L.C. A Directly Compressible Pregelatinised Sago Starch: A New Excipient in the Pharmaceutical Tablet Formulations. Polymers 2022, 14, 3050. [Google Scholar] [CrossRef]
- Nieto, N.; Márquez-Goméz, M.; Galicia, T.; Estrada, I.; Mendoza-Duarte, M.; Marquez- Melendez, R.; Ruiz-Gutiérrez, M.; Quintero-Ramos, A.; Portillo-Arroyo, B.; Figueroa, C. Use of hydrolysis prior to the chemical and thermomechanical modification of rice starch: Alternative to traditional modification treatments. BIOtecnia 2021, XXIII, 151–160. [Google Scholar] [CrossRef]
- Li, D.; Yu, X.; Wang, P.; Cui, B.; Xu, E.; Tao, Y.; Han, Y. Effect of pre-gelatinization on α-amylase-catalyzed hydrolysis of corn starch under moderate electric field. Int. J. Biol. Macromol. 2022, 221, 1335–1344. [Google Scholar] [CrossRef]
- Shobana, V.; Rajalakshmi, K. Quantitative analysis of primary metabolites in Mangifera indica (unripe mango). Rasayan. J. Chem. 2010, 3, 597–599. [Google Scholar]
- Lagunes-Delgado, C.; Agama-Acevedo, E.; Patiño-Rodríguez, O.; Martinez, M.M.; Bello-Pérez, L.A. Recovery of mango starch from unripe mango juice. LWT 2022, 153, 112514. [Google Scholar] [CrossRef]
- Fitzpatrick, J. Powder properties in food production systems. In Handbook of Food Powders; Elsevier: Amsterdam, The Netherlands, 2013; pp. 285–308. [Google Scholar]
- Goyal, A.; Sharma, V.; Sihag, M.; Tomar, S.; Arora, S.; Sabikhi, L.; Singh, A. Development and Physico-Chemical Characterization of Microencapsulated Flaxseed Oil Powder: A Functional Ingredient for Omega-3 Fortification. Powder Technol. 2015, 286, 527–537. [Google Scholar] [CrossRef]
- Moghbel, A.; Abbaspour, H. Study of compressibility properties of yogurt powder in order to prepare a complementary formulation. Iran. J. Pharm. Res. 2013, 12, 231–237. [Google Scholar] [PubMed]
- Wang, S.; Copeland, L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit. Rev. Food Sci. Nutr. 2013, 55, 1081–1097. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, H.; Liu, P.; Wang, W.; Dong, H. Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocoll. 2019, 87, 173–179. [Google Scholar] [CrossRef]
- Pornpitchanarong, C.; Akkaramongkolporn, P.; Nattapulwat, N.; Opanasopit, P.; Patrojanasophon, P. Development and Optimization of Andrographis paniculata Extract-Loaded Self-Microemulsifying Drug Delivery System Using Experimental Design Model. Pharmaceutics 2024, 16, 166. [Google Scholar] [CrossRef]
- Soundaranathan, M.; Vivattanaseth, P.; Walsh, E.; Pitt, K.; Johnston, B.; Markl, D. Quantification of swelling characteristics of pharmaceutical particles. Int. J. Pharm. 2020, 590, 119903. [Google Scholar] [CrossRef]
- Leturia, M.; Mohammed, B.; Lagarde, S.; Ronga, I.; Saleh, K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technol. 2014, 253, 406–423. [Google Scholar] [CrossRef]
- Suhag, R.; Kellil, A.; Razem, M. Factors Influencing Food Powder Flowability. Powders 2024, 3, 65–76. [Google Scholar] [CrossRef]
- Jia, R.; Cui, C.; Gao, L.; Qin, Y.; Ji, N.; Dai, L.; Wang, Y.; Xiong, L.; Shi, R.; Sun, Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr. Polym. 2023, 321, 121260. [Google Scholar] [CrossRef]
- Masoumi, H.R.; Basri, M.; Samiun, W.S.; Izadiyan, Z.; Lim, C.J. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design. Int. J. Nanomed. 2015, 10, 6469–6476. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, D.R. Chapter 14—Cellulose Nanocrystals for Health Care Applications. In Applications of Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 415–459. [Google Scholar]
- Torrenegra, M.; Solano, R.; Herrera, A.; León, G.; Pajaro, A. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Biodegradable Films Based On Modified Colombian Starches of Cassava and Yam. Int. J. PharmTech Res. 2018, 11, 368–376. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, S.; Copeland, L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci. Rep. 2016, 6, 28271. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Araujo, T.; Souza, N.; Rodrigues, L.; Lisboa, H.M.; Pasquali, M.; Trindade, G.; Rocha, A.P. Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. J. Agric. Food Res. 2019, 1, 100012. [Google Scholar] [CrossRef]
- Rahman, S.; Saha, T.; Masum, Z.U.; Chowhdury, J.A. Evaluation of Physical Properties of Selected Excipients for Direct Compressible Tablet. Bangladesh Pharm. J. 2017, 20, 34. [Google Scholar] [CrossRef]
- Kolakovic, R.; Peltonen, L.; Laaksonen, T.; Putkisto, K.; Laukkanen, A.; Hirvonen, J. Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient. Aaps Pharmscitech 2011, 12, 1366–1373. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Gabbott, I.P.; Al Husban, F.; Reynolds, G.K. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes. Eur. J. Pharm. Biopharm. 2016, 106, 70–78. [Google Scholar] [CrossRef]
- Olayemi, O.; Adetunji, O.; Isimi, C. Physicochemical, structural characterization and pasting properties of pre-gelatinized Neorautanenia mitis starch. Polim. Med. 2021, 51, 7–16. [Google Scholar] [CrossRef]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef]
- Lang, S.; Gao, F.; Li, X.; Liu, Y.; Zhang, H.; Wang, L. Effect of Different Pre-Gelatinization Treatments on the Properties of Acidified Mung Bean Starch. Starch-Stärke 2023, 75, 2200211. [Google Scholar] [CrossRef]
- Nagadivya, P.; Ramakrishna, R.; Sridhar, G.; Bhanushashank, R. Effect of various binding agents on tablet hardness and release rate profiles of diclofenac sodium tablets. Int. J. Res. Pharm. Sci. 2012, 3, 12–16. [Google Scholar]
- Bayor, M.; Tuffour, E.; Lambon, P. Evaluation of Starch From New Sweet Potato Genotypes for use as A Pharmaceutical Diluent, Binder or Disintegrant. J. Appl. Pharm. Sci. 2013, 3, S17–S23. [Google Scholar] [CrossRef]
- Nelson, E.; Arndt, J.R.; Busse, L.W. The Effect of Type and Concentration of Binders on the Hardness and Compressibility of Sulfathiazole Tablets Made at Constant Pressure. J. Am. Pharm. Assoc. (Sci. Ed.) 1957, 46, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Cai, C.; Gilbert, R.G.; Li, E.; Wang, J.; Wei, C. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016, 52, 359–368. [Google Scholar] [CrossRef]
- Veronica, N.; Lee, E.S.M.; Heng, P.W.S.; Liew, C.V. Functionality of wet-granulated disintegrant in comparison to directly incorporated disintegrant in a poorly water-soluble tablet matrix. Int. J. Pharm. 2024, 661, 124467. [Google Scholar] [CrossRef]
Factor | Name | Units | Type | Min | Max | Coded Low | Coded High |
---|---|---|---|---|---|---|---|
A | Time | h | Numeric | 1.0000 | 6.00 | −1 ↔ 1.00 | +1 ↔ 6.00 |
B | Temperature | °C | Numeric | 40.00 | 60.00 | −1 ↔ 40.00 | +1 ↔ 60.00 |
Factor | Name | Units | Type | Min | Max | Coded Low | Coded High |
---|---|---|---|---|---|---|---|
A | Time | min | Numeric | 1.0000 | 5.00 | −1 ↔ 1.00 | +1 ↔ 5.00 |
B | Temperature | °C | Numeric | 100.00 | 150.00 | −1 ↔ 100.00 | +1 ↔ 150.00 |
Ingredients | %wt |
---|---|
Acetaminophen (325 mg) | 73.86 |
Microcrystalline cellulose | 20 |
Sodium starch glycolate | 4 |
Binder # | 1 |
Magnesium stearate | 1.14 |
Total | 100 |
Run | Factor A | Factor B | Response (Y1) | Response (Y2) | Response (Y3) |
---|---|---|---|---|---|
Time (h) | Temperature (°C) | Hausner Ratio | Carr Index | %Swelling | |
1 | 6 | 50 | 2 | 50 | 350 |
2 | 3.5 | 40 | 1.33 | 25 | 320 |
3 | 6 | 60 | 1.33 | 15 | 280 |
4 | 3.5 | 50 | 1.25 | 20 | 350 |
5 | 3.5 | 50 | 1.25 | 20 | 340 |
6 | 3.5 | 50 | 1.33 | 25 | 360 |
7 | 3.5 | 50 | 1.33 | 25 | 350 |
8 | 3.5 | 60 | 1 | 10 | 300 |
9 | 6 | 40 | 2 | 50 | 300 |
10 | 3.5 | 50 | 1.11 | 10 | 350 |
11 | 1 | 60 | 1.45 | 25 | 250 |
12 | 3.5 | 50 | 1.25 | 20 | 350 |
13 | 1 | 50 | 2 | 50 | 300 |
14 | 1 | 40 | 2 | 50 | 300 |
Fit Summary | |||||
---|---|---|---|---|---|
Model | p-Value | Lack of Fit | R2 | Recommendation | |
Hausner ratio | Quadratic | <0.0001 | 0.1262 | 0.9091 | Suggested |
Carr index | Quadratic | 0.0009 | 0.2123 | 0.8126 | Suggested |
%swelling | Quadratic | <0.0001 | 0.0826 | 0.9233 | Suggested |
Multiple regression model (Coded equation) | |||||
Hausner ratio = 1.08 − 0.0205A − 0.0064B + 0.0047AB + 0.1310A2 − 0.0296B2 Carr index = 7.47 − 1.42A − 0.45B + 0.32AB + 10.22A2 − 2.28B2 %swelling = 350.29 + 13.33A − 15.00B + 7.50AB − 26.18A2 − 41.18B2 |
Name | Goal | Solution | Desirability | Confirmation | p-Value |
---|---|---|---|---|---|
A: Time | is in range | 3.802 | 0.871 | ||
B: Temperature | is in range | 56.40 | |||
Hausner ratio | minimize | 1.06 ± 0.11 | 1.09 ± 0.06 | 0.3587 | |
Carr index | minimize | 10.92 ± 6.55 | 11.38 ± 0.64 | 0.9140 | |
%swelling | maximize | 328.23 ± 9.27 | 336.67 ± 20.82 | 0.5564 |
Run | Factor A | Factor B | Response 1 | Response 2 | Response 3 |
---|---|---|---|---|---|
Time (min) | Temperature (°C) | Hausner Ratio | Carr Index | %Swelling | |
1 | 3 | 150 | 1.136 | 12 | 1800 |
2 | 5 | 125 | 1.11 | 10 | 1400 |
3 | 1 | 150 | 1.05 | 5 | 1350 |
4 | 3 | 125 | 1.05 | 4.76 | 1500 |
5 | 3 | 125 | 1.18 | 15 | 1600 |
6 | 5 | 150 | 1.16 | 13.64 | 1200 |
7 | 3 | 125 | 1.05 | 4.76 | 1500 |
8 | 1 | 125 | 1.11 | 10 | 1200 |
9 | 1 | 100 | 1.25 | 20 | 1250 |
10 | 3 | 100 | 1.06 | 5.26 | 1600 |
11 | 5 | 100 | 1.13 | 11.11 | 1550 |
12 | 3 | 125 | 1.052 | 5 | 1500 |
13 | 3 | 125 | 1.052 | 5 | 1600 |
14 | 3 | 125 | 1.18 | 15 | 1650 |
Fit Summary | |||||
---|---|---|---|---|---|
Model | p-Value | Lack of Fit | R2 | Recommendation | |
Hausner ratio | Quadratic | 0.0002 | 0.8422 | 0.8237 | Suggested |
Carr index | Quadratic | 0.0003 | 0.9060 | 0.8017 | Suggested |
%swelling | Quadratic | 0.0018 | 0.0996 | 0.7243 | Suggested |
Multiple regression model (Coded equation) | |||||
Hausner ratio = 1.11 − 0.003A − 0.014B + 0.058AB Carr index = 9.75 − 0.04A − 0.96B + 4.38AB %swelling = 1570.59 + 58.33A − 8.33B − 112.5AB − 307.35A2 + 92.65B2 |
Name | Goal | Solution | Desirability | Data Mean | p-Value |
---|---|---|---|---|---|
A: Time | is in range | 3 | 0.767 | ||
B: Temperature | is in range | 150 | |||
Hausner ratio | minimize | 1.08 ± 0.03 | 1.03 ± 0.06 | 0.2663 | |
Carr index | minimize | 7.47 ± 2.37 | 4.27 ± 0.25 | 0.1428 | |
%swelling | maximize | 1360.71 ± 280.23 | 1326.67 ± 25.17 | 0.8531 |
Excipient | Hauner Ratio | Carr Index | %Swelling | ||
---|---|---|---|---|---|
MCC PH102 | 1.28 ± 0.02 | Passable | 21.83 ± 1.04 | Passable | 0.00 ± 0.00 |
SSG | 1.35 ± 0.01 | Poor | 26.00 ± 0.50 | Poor | 1066.67 ± 28.87 |
PVP K30 | 1.46 ± 0.01 | Very Poor | 31.67 ± 0.58 | Poor | Soluble |
Unmodified M. indica fruit starch | 1.38 ± 0.01 #$ | Poor | 27.50 ± 0.50 #$ | Poor | 0.00 ± 0.00 & |
Hydrolyzed M. indica fruit starch | 1.09 ± 0.06 #&$* | Excellent | 11.38 ± 0.64 #&$* | Good | 336.67 ± 20.82 &* |
Pre-gelatinized M. indica fruit starch | 1.03 ± 0.06 #&$* | Excellent | 4.27 ± 0.25 #&$* | Excellent | 1326.67 ± 25.17 &* |
Tablet Performances | |||||
Binder | Hardness | Friability | |||
PVP K30 tablet | 8.79 ± 1.32 | PASS | |||
Unmodified M. indica fruit starch | 8.68 ± 0.57 | PASS | |||
Hydrolyzed M. indica fruit starch | 6.23 ± 1.16 @ | PASS | |||
Pre-gelatinized M. indica fruit starch | 8.81 ± 1.32 | PASS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaksmithanont, P.; Bangsitthideth, K.; Arunprasert, K.; Patrojanasophon, P.; Pornpitchanarong, C. Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient. Polymers 2024, 16, 2653. https://doi.org/10.3390/polym16182653
Chaksmithanont P, Bangsitthideth K, Arunprasert K, Patrojanasophon P, Pornpitchanarong C. Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient. Polymers. 2024; 16(18):2653. https://doi.org/10.3390/polym16182653
Chicago/Turabian StyleChaksmithanont, Prin, Ketsana Bangsitthideth, Kwanputtha Arunprasert, Prasopchai Patrojanasophon, and Chaiyakarn Pornpitchanarong. 2024. "Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient" Polymers 16, no. 18: 2653. https://doi.org/10.3390/polym16182653
APA StyleChaksmithanont, P., Bangsitthideth, K., Arunprasert, K., Patrojanasophon, P., & Pornpitchanarong, C. (2024). Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient. Polymers, 16(18), 2653. https://doi.org/10.3390/polym16182653