The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix
Abstract
:1. Introduction
- -
- Hemp absorbs large amounts of CO2 from the atmosphere during the growing season [11,14] and can absorb heavy metals from the soil in post-mining areas [15]. A significant advantage of the plant is its relatively low energy intensity during processing, making it possible to use it to produce so-called ‘greenhouses’.
- -
- Natural gypsum, whose reserves in Poland have been determined to be 261 million MG [16], is extracted from mineral resources (calcium sulfate dihydrate) in the form of gypsum rock. Gypsum is a widely used material that is safe for the environment and can be recycled.
2. Materials and Methods
2.1. Materials
2.2. Technological Process of Manufacturing Fibre–Gypsum Composites
2.3. Methods of Testing
2.3.1. Measurement of the Setting Time (Beginning and End Method)
- t1—the beginning of setting time; t0—test start time.
2.3.2. The Determination of the Density of the Composites
- m—sample weight; —sample length; —sample width; t—sample thickness.
2.3.3. The Determination of the Radiological Density of the Manufactured Composites
2.3.4. Evaluation of Mechanical Properties
- —breaking load; —the thickness of the sample; —the width of the sample.
2.3.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Beutha, B.; Dowgielewicz, S. Technologia Konopi (Hemp Technology); Wydawnictwo Przemysłu Lekkiego i Spożywczego: Warszawa, Poland, 1958. [Google Scholar]
- European Commission Report. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/hemp_pl (accessed on 15 June 2024).
- Mirski, R.; Boruszewski, P.; Trociński, A.; Dziurka, D. The possibility to use long fibres from fast growing hemp (Cannabis sativa L.) for the production of boards for the building and furniture industry. BioResources 2017, 12, 3521–3529. [Google Scholar] [CrossRef]
- Pil, L.; Bensadoun, F.; Pariset, J.; Verpoest, I. Why are designers fascinated by flax and hemp fibre composites? Compos. Part A Appl. Sci. Manuf. 2016, 83, 193–205. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Trociński, A. Insulation properties of boards made from long hemp (Cannabis sativa L.) fibers. BioResources 2018, 13, 6591–6599. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Brencis, R.; Pleiksnis, S.; Skujans, J.; Adamovics, A.; Gross, U. Lightweight composite building materials with hemp (Cannabis sativa L.) additives. Chem. Eng. Trans. 2017, 57, 1375–1380. [Google Scholar] [CrossRef]
- Wang, B.; Sain, M.; Oksman, K. Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl. Compos. Mater. 2007, 14, 89–103. [Google Scholar] [CrossRef]
- Mazzanti, V.; de Luna, M.S.; Pariante, R.; Mollica, F.; Filippone, G. Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105990. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A. Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind. Crops Prod. 2016, 84, 139–150. [Google Scholar] [CrossRef]
- Kijeński, J.; Kijeńska, M.; Osawaru, O. Plant fibers as alternatives to mineral fillers in thermoplastic composites—Ford’s vision or Al Gore’s? Polimery 2016, 61, 467–473. [Google Scholar] [CrossRef]
- Zak, P.; Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W. The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials. Constr. Build. Mater. 2016, 106, 179–188. [Google Scholar] [CrossRef]
- Brencis, R.; Skujans, J.; Iljins, U.; Ziemelis, I.; Osits, N. Research on foam gypsum with hemp fibrous reinforcement. Chem. Eng. Trans. 2011, 25, 159–164. [Google Scholar] [CrossRef]
- Pervaiz, M.; Sain, M.M. Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 2003, 39, 325–340. [Google Scholar] [CrossRef]
- Majtkowski, W.; Golimowski, R.; Boroń, M.; Szulc, P.M. Reclamation of irrigation fields in Bydgoszcz with the use of phytoremediation methods. Probl. Inżynierii Rol. 2011, 19, 177–184. [Google Scholar]
- Szlugaj, J.; Naworyta, W. Analysis of the changes in Polish gypsum resources in the context of flue gas desulfurization in conventional power plants. Gospod. Surowcami Miner. –Miner. Resour. Manag. 2015, 31, 93–107. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites–a review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Czapluk, M.; Czerniak, A. Rozwój rynku uprawy i przetwarzania konopi przemysłowych w Polsce. Polityka Insight Res. 2020. Available online: https://www.politykainsight.pl/_resource/multimedium/20198941 (accessed on 29 February 2024).
- Ali, M.A.; Grimer, F.J. Mechanical properties of glass fibre-reinforced gypsum. J. Mater. Sci. 1969, 4, 389–395. [Google Scholar] [CrossRef]
- Alameda, L.; Calderón, V.; Junco, C.; Rodríguez, A.; Gadea, J.; Gutiérrez-González, S. Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers. Mater. De Construcción 2016, 66, e100. [Google Scholar] [CrossRef]
- Ferrández, D.; Álvarez, M.; Zaragoza-Benzal, A.; Cobo-González, Á.; Santos, P. Development and Characterization of Innovative Hemp–Gypsum Composites for Application in the Building Industry. Appl. Sci. 2024, 14, 2229. [Google Scholar] [CrossRef]
- Iucolano, F.; Liguori, B.; Aprea, P.; Caputo, D. Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster. Compos. Part B Eng. 2018, 138, 149–156. [Google Scholar] [CrossRef]
- Klin, S. Research of selected physical properties of the each fraction of the building gypsum as well as homogeneity of the grain size distribution of the gypsum binding material. Zesz. Nauk. Akad. Rol. We Wrocławiu Melior. 1991, 39. [Google Scholar]
- EN 196-1:2016-07; Methods of Testing Cement—Part 1: Determination of Strength. European Standards s.r.o.: Plzen, Czech Republic, 2016.
- PN-EN 13279-2:2014; Gypsum Binders and Gypsum Plasters—Part 2: Test Methods. European Standards s.r.o.: Plzen, Czech Republic, 2014.
- PN-EN 323:1999; Wood-Based Panels. Determination of Density. European Standards s.r.o.: Plzen, Czech Republic, 1999.
- PN-EN 310:1999; Wood-based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Standards s.r.o.: Plzen, Czech Republic, 1999.
- Babu, K.S.; Ratnam, C. Mechanical and thermophysical behavior of hemp fiber reinforced gypsum composites. Mater. Today Proc. 2021, 44, 2245–2249. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Q.; Zhang, X.; Ma, Y.; Wu, Y.; Guo, Z.; Gu, J. Gypsum reinforced using hemp fibers: Enhanced interfacial compatibility by dual-modification strategy. Constr. Build. Mater. 2024, 419, 135521. [Google Scholar] [CrossRef]
- Fantilli, A.P.; Jóźwiak-Niedźwiedzka, D.; Denis, P. Bio-Fibres as a reinforcement of gypsum composites. Materials 2021, 14, 4830. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, G.; Lourenço, P.B.; Camões, A.; Martins, A.; Cunha, S. Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem. Concr. Compos. 2015, 58, 29–39. [Google Scholar] [CrossRef]
- Medina, N.F.; Barbero-Barrera, M.M. Mechanical and physical enhancement of gypsum composites through a synergic work of polypropylene fiber and recycled isostatic graphite filler. Constr. Build. Mater. 2017, 131, 165–177. [Google Scholar] [CrossRef]
- Boccarusso, L.; Durante, M.; Iucolano, F.; Mocerino, D.; Langella, A. Production of hemp-gypsum composites with enhanced flexural and impact resistance. Constr. Build. Mater. 2020, 260, 120476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trociński, A.; Wieruszewski, M.; Bartkowiak, M.; Dziurka, D.; Mirski, R. The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix. Polymers 2024, 16, 2644. https://doi.org/10.3390/polym16182644
Trociński A, Wieruszewski M, Bartkowiak M, Dziurka D, Mirski R. The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix. Polymers. 2024; 16(18):2644. https://doi.org/10.3390/polym16182644
Chicago/Turabian StyleTrociński, Adrian, Marek Wieruszewski, Monika Bartkowiak, Dorota Dziurka, and Radosław Mirski. 2024. "The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix" Polymers 16, no. 18: 2644. https://doi.org/10.3390/polym16182644
APA StyleTrociński, A., Wieruszewski, M., Bartkowiak, M., Dziurka, D., & Mirski, R. (2024). The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix. Polymers, 16(18), 2644. https://doi.org/10.3390/polym16182644