Unraveling the Effect of Strain Rate and Temperature on the Heterogeneous Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations and Continuum Models
Abstract
:1. Introduction
2. Models and Methods
2.1. Preparation and Equilibration of Model Configurations
2.2. Deformation Process
3. Results and Discussion
3.1. Macroscopic Mechanical Behavior of PEO/SiO2 Nanocomposites
3.1.1. Dependence of the Linear Mechanical Properties on Strain Rate
3.1.2. Dependence of the Linear Mechanical Properties on Temperature
3.2. Heterogeneous (Local) Mechanical Behavior of PEO/SiO2 Nanocomposites
3.2.1. Dependence of the Local Linear Mechanical Properties on Strain Rate
3.2.2. Dependence of the Local Linear Mechanical Properties on Temperature
3.2.3. Strain Heterogeneities within Polymer Nanocomposite Systems
4. Mobility of Polymer Chains under Deformation
5. Conclusions
- When exploring the influence of temperature on mechanical behavior, the study reveals that an increase in temperature leads to a reduction in material strength. For instance, the decrease in Young’s modulus increases from 6.69% to 64.79% as the system’s temperature rises from 200 K to 400 K. This drop in rigidity becomes more pronounced at lower strain rates.
- At temperatures below the glass transition temperature (), nanocomposite systems tend to have a higher Young’s modulus, indicating a more rigid and glassy state. Above , nanocomposites become softer and less rigid, resulting in a decrease in Young’s modulus.
- Strain rate variations have a more significant impact on the Young’s modulus at higher temperatures. The critical strain rate of approximately 1.0 × 10−5 fs−1 signifies a shift from brittle and rigid behavior to softer characteristics in the nanocomposite system.
- Strain rate increases lead to a considerable rise in Young’s modulus, with a peak increase of up to 99.7% when the strain rate is elevated from 1.0 × 10−7 fs−1 to 1.0 × 10−4 fs−1 at 220 K. This sensitivity to strain rate enhances with higher temperatures, indicating a transition toward improved strain resistance and deformation resistance.
- The transition from the glassy state to the molten one at temperature equal to has an equivalent impact on both the Young’s modulus and Poisson’s ratio. Nanocomposites with temperatures below may undergo less lateral expansion under deformation. They demonstrate greater Poisson’s ratios above , increasing to 77.82% at 400 K for a strain rate of 1.0 × 10−5 fs−1 and 65.13% for 1.0 × 10−6 fs−1.
- An analysis of local results, which examine atomic-scale stress and strain fields, provides valuable information on the diverse mechanical properties exhibited by the PEO/SiO2 model systems. The discernment of interphase and matrix regions reveals significant variations in rigidity between these areas when subjected to varying strain rates and temperatures, thus aiding in the comprehension of local stress distribution.
- Differences between the (more rigid) interphase and the matrix region are more important for low temperatures and/or high strain rates. On the contrary, under conditions of extremely high temperatures and low strain rates, the differences in the mechanical behavior between the interphase and matrix regions are reduced, supporting the idea of a diminishing interphase zone.
- The precision of the Richeton–Ji (RJ) model in predicting the mechanical properties of the PEO/SiO2 nanocomposite system has been established, as its results are highly congruent with those obtained from MD simulations.
- The analysis reveals that temperature and strain rate significantly impact polymer chain mobility, especially above the glass transition temperature (). At higher temperatures, lower strain rates result in greater mean-squared displacement (MSD) values, particularly in the matrix region. This underscores the importance of thermal and mechanical conditions in influencing polymer deformation, with the matrix region being more responsive than the interphase region.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Force Field Details for the PEO/SiO2 Model
Atom Types | Mass (g/mol) | σ (nm) | ϵ (kJ/mol) | Charge |
---|---|---|---|---|
CH2 | 14.027 | 0.395 | 0.3824 | 0.25 |
CH3 | 15.035 | 0.375 | 0.3824 | −0.25 |
O (PEO) | 15.9994 | 0.28 | 0.457296 | 0.5 |
Si | 28.086 | 0.392 | 2.5104 | 10.2 |
O (Silica) | 15.9994 | 0.3154 | 0.636 | −0.51 |
H | 1.008 | 0.2352 | 0.092 | 0.255 |
CH3–CH2 | 0.385 | 0.558247 | ||
O–CH2 | 0.3375 | 0.41821 | ||
O–CH3 | 0.3275 | 0.610424 |
Bond | b (nm) | kb (kJ/mol·nm2) | ||||
CH2–CH2 | 0.154 | 217,700 | ||||
CH2–O | 0.141 | 267,900 | ||||
CH3–O | 0.141 | 267,900 | ||||
Si–O | 0.163 | 323,984 | ||||
H–O | 0.095 | 533,549 | ||||
Angle | θ0 (deg) | kθ (kJ/mol × rad2) | ||||
CH2–CH2–O | 112 | 418.218 | ||||
CH2–O–CH2 | 112 | 502.194 | ||||
CH3–O–CH2 | 112 | 502.194 | ||||
Si–O–Si | 144 | 209.6 | ||||
O–Si–O | 109.47 | 469.72 | ||||
Si–O–H | 119.52 | 228.84 | ||||
Dihedral | C0 (kJ/mol) | C1 (kJ/mol) | C2 (kJ/mol) | C3 (kJ/mol) | C4 (kJ/mol) | C5 (kJ/mol) |
O–CH2–CH2–O | 2.22267 | 17.03651 | 8.29835 | −31.2451 | 5.13025 | −1.91522 |
CH2–CH2–O–CH2 | 1.60941 | 19.79231 | −7.82474 | −15.72474 | 6.43215 | −4.5435 |
CH2–CH2–O–CH3 | 1.60941 | 19.79231 | −7.82474 | −15.72474 | 6.43215 | −4.5435 |
Appendix B. Global Stress–Strain Curves
Appendix C. Step-by-Step Computation of the Young’s Modulus for the Polymer Nanocomposite System Based on the RJ Model
- Step1: For i = 1, 2, and 3, determine , which corresponds to the three reference instantaneous moduli of pure polymer at a reference frequency or strain rate. Note that, i = 1, 2, and 3 corresponds to the transitions, respectively.
- Step2: Based on the results from step1, by using the RJ equation below, calculate (the three reference instantaneous moduli of the nanocomposite as a function of one of the polymer matrix for i = 1, 2, and 3) for different nanofiller volume fraction and the corresponding parameters.
- “ref” in the superscript indicates a reference value;
- h is the stiffness ratio;
- is the Young’s modulus of the nanofillers;
- are expressed as a function of the nanofillers volume fraction as follows: ; such that, are thicknesses for the interphase and particles, respectively.
- Step3: According to the results from step2 and by using the following equation, calculate for i = 1, 2 and 3.
- represents the instantaneous stiffness at a reference frequency or strain rate.
- “s” is the sensitivity constant of the modulus to frequency for a specified polymer.
- Step4: By using the results from step3, calculate the Young’s modulus of the nanocomposite from the following equation:
- K: Boltzmann constant (is defined to be exactly 1.380649 × 10−23 J⋅K−1).
- The authors used the Weibull moduli (mi) to represent the activation bond breakage energy in relation with the temperature.
- Activation energy ().
- Williams–Landel–Ferry (WLF) parameters for a given reference strain rate.
References
- Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.K.; Walsh, F.C. Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale 2019, 11, 4653–4682. [Google Scholar] [CrossRef]
- de Oliveira, A.D.; Beatrice, C.A.G. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites-Recent Evolutions; IntechOpen: London, UK, 2018; pp. 103–104. [Google Scholar]
- Wang, K.; Ahzi, S.; Matadi Boumbimba, R.; Bahlouli, N.; Addiego, F.; Rémond, Y. Micromechanical modeling of the elastic behavior of polypropylene based organoclay nanocomposites under a wide range of temperatures and strain rates/frequencies. Mech. Mater. 2013, 64, 56–68. [Google Scholar] [CrossRef]
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef]
- Rao; Pochan, J.M. Mechanics of Polymer−Clay Nanocomposites. Macromolecules 2007, 40, 290–296. [Google Scholar] [CrossRef]
- Tseng, R.J.; Tsai, C.; Ma, L.; Ouyang, J.; Ozkan, C.S.; Yang, Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 2006, 1, 72–77. [Google Scholar] [CrossRef]
- Suematsu, K.; Arimura, M.; Uchiyama, N.; Saita, S. Transparent BaTiO3/PMMA Nanocomposite Films for Display Technologies: Facile Surface Modification Approach for BaTiO3 Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 2430–2437. [Google Scholar] [CrossRef]
- Mittal, V.; Kim, J.K.; Pal, K. Recent Advances in Elastomeric Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2011; Volume 9. [Google Scholar]
- Jancar, J.; Douglas, J.F.; Starr, F.W.; Kumar, S.K.; Cassagnau, P.; Lesser, A.J.; Sternstein, S.S.; Buehler, M.J. Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 2010, 51, 3321–3343. [Google Scholar] [CrossRef]
- Matteucci, S.; Kusuma, V.A.; Sanders, D.; Swinnea, S.; Freeman, B.D. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 2008, 307, 196–217. [Google Scholar] [CrossRef]
- Reda, H.; Chazirakis, A.; Power, A.J.; Harmandaris, V. Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations: Conformational Heterogeneity and the Role of Strain Rate. J. Phys. Chem. B 2022, 126, 7429–7444. [Google Scholar] [CrossRef]
- Wu, J.; Lerner, M.M. Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chem. Mater. 1993, 5, 835–838. [Google Scholar] [CrossRef]
- Cosgrove, T.; Griffiths, P.C.; Lloyd, P.M. Polymer adsorption. The effect of the relative sizes of polymer and particle. Langmuir 1995, 11, 1457–1463. [Google Scholar] [CrossRef]
- Van der Beek, G.P.; Stuart, M.A.C.; Fleer, G.J.; Hofman, J.E. Segmental adsorption energies for polymers on silica and alumina. Macromolecules 1991, 24, 6600–6611. [Google Scholar] [CrossRef]
- Zaman, A.A. Effect of polyethylene oxide on the viscosity of dispersions of charged silica particles: Interplay between rheology, adsorption, and surface charge. Colloid Polym. Sci. 2000, 278, 1187–1197. [Google Scholar] [CrossRef]
- Fan, X.; Hu, Z.; Wang, G. Synthesis and unimolecular micelles of amphiphilic copolymer with dendritic poly(L-lactide) core and poly(ethylene oxide) shell for drug delivery. RSC Adv. 2015, 5, 100816–100823. [Google Scholar] [CrossRef]
- Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci. 2016, 60, 86–128. [Google Scholar] [CrossRef]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Xiong, L.; Chen, Z.; Tian, Q.; Cao, T.; Xu, C.; Li, F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009, 81, 8687–8694. [Google Scholar] [CrossRef]
- Hutchison, J.C.; Bissessur, R.; Shriver, D.F. Conductivity anisotropy of polyphosphazene−montmorillonite composite electrolytes. Chem. Mater. 1996, 8, 1597–1599. [Google Scholar] [CrossRef]
- Alasfar, R.H.; Ahzi, S.; Barth, N.; Kochkodan, V.; Khraisheh, M.; Koç, M. A Review on the Modeling of the Elastic Modulus and Yield Stress of Polymers and Polymer Nanocomposites: Effect of Temperature, Loading Rate and Porosity. Polymers 2022, 14, 360. [Google Scholar] [CrossRef]
- Schodek, D.L.; Ferreira, P.; Ashby, M.F. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects; Butterworth-Heinemann: Oxford, UK, 2009; ISBN 0080941532. [Google Scholar]
- Yoshimoto, K.; Jain, T.S.; Van Workum, K.; Nealey, P.F.; de Pablo, J.J. Mechanical Heterogeneities in Model Polymer Glasses at Small Length Scales. Phys. Rev. Lett. 2004, 93, 175501. [Google Scholar] [CrossRef]
- Quanguo, W.; Ke, Y.; Qingli, C. Molecular simulation investigations on the interaction properties of graphene oxide-reinforced polyurethane nanocomposite toward the improvement of mechanical properties. Mater. Today Commun. 2023, 35, 106404. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Korsunsky, A.M. Multiscale stress and strain statistics in the deformation of polycrystalline alloys. Int. J. Plast. 2022, 152, 103260. [Google Scholar] [CrossRef]
- Tanis, I.; Power, A.J.; Chazirakis, A.; Harmandaris, V.A. Heterogeneous Glass Transition Behavior of Poly(Ethylene oxide)/Silica Nanocomposites via Atomistic MD Simulations. Macromolecules 2023, 56, 5482–5489. [Google Scholar] [CrossRef]
- Power, A.J.; Papananou, H.; Rissanou, A.N.; Labardi, M.; Chrissopoulou, K.; Harmandaris, V.; Anastasiadis, S.H. Dynamics of Polymer Chains in Poly(ethylene oxide)/Silica Nanocomposites via a Combined Computational and Experimental Approach. J. Phys. Chem. B 2022, 126, 7745–7760. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Panagiotopoulos, A.Z. Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains. J. Phys. Chem. B 2012, 116, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Rissanou, A.N.; Papananou, H.; Petrakis, V.S.; Doxastakis, M.; Andrikopoulos, K.S.; Voyiatzis, G.A.; Chrissopoulou, K.; Harmandaris, V.; Anastasiadis, S.H. Structural and Conformational Properties of Poly(ethylene oxide)/Silica Nanocomposites: Effect of Confinement. Macromolecules 2017, 50, 6273–6284. [Google Scholar] [CrossRef]
- Skountzos, E.N.; Tsalikis, D.G.; Stephanou, P.S.; Mavrantzas, V.G. Individual Contributions of Adsorbed and Free Chains to Microscopic Dynamics of Unentangled poly(ethylene Glycol)/Silica Nanocomposite Melts and the Important Role of End Groups: Theory and Simulation. Macromolecules 2021, 54, 4470–4487. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2008; ISBN 110739418X. [Google Scholar]
- Richeton, J.; Schlatter, G.; Vecchio, K.S.; Rémond, Y.; Ahzi, S. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 2005, 46, 8194–8201. [Google Scholar] [CrossRef]
- Richeton, J.; Ahzi, S.; Vecchio, K.S.; Jiang, F.C.; Adharapurapu, R.R. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 2006, 43, 2318–2335. [Google Scholar] [CrossRef]
- Matadi Boumbimba, R.; Wang, K.; Bahlouli, N.; Ahzi, S.; Rémond, Y.; Addiego, F. Experimental investigation and micromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites. Mech. Mater. 2012, 52, 58–68. [Google Scholar] [CrossRef]
- Tang, C.; Guo, W.; Chen, C. Molecular dynamics simulation of tensile elongation of carbon nanotubes: Temperature and size effects. Phys. Rev. B 2009, 79, 155436. [Google Scholar] [CrossRef]
- Wei, C.; Cho, K.; Srivastava, D. Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 2003, 67, 115407. [Google Scholar] [CrossRef]
- Javvaji, B.; Raha, S.; Mahapatra, D.R. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading. J. Nanopart. Res. 2017, 19, 37. [Google Scholar] [CrossRef]
- Baimova, J.A.; Liu, B.; Dmitriev, S.V.; Srikanth, N.; Zhou, K. Mechanical properties of bulk carbon nanostructures: Effect of loading and temperature. Phys. Chem. Chem. Phys. 2014, 16, 19505–19513. [Google Scholar] [CrossRef] [PubMed]
- Madkour, T.M.; Hagag, F.M.; Mamdouh, W.; Azzam, R.A. Molecular-level modeling and experimental investigation into the high performance nature and low hysteresis of thermoplastic polyurethane/multi-walled carbon nanotube nanocomposites. Polymer 2012, 53, 5788–5797. [Google Scholar] [CrossRef]
- Tsai, J.; Sun, C.T. Constitutive model for high strain rate response of polymeric composites. Compos. Sci. Technol. 2002, 62, 1289–1297. [Google Scholar] [CrossRef]
- Mourad, A.-H.I.; Elsayed, H.F.; Barton, D.C.; Kenawy, M.; Abdel-Latif, L.A. Ultra high molecular weight polyethylene deformation and fracture behaviour as a function of high strain rate and triaxial state of stress. Int. J. Fract. 2003, 120, 501–515. [Google Scholar] [CrossRef]
- El-Sayed, H.F.M.; Barton, D.C.; Abdel-Latif, L.A.; Kenawy, M. Experimental and numerical investigation of deformation and fracture of semicrystalline polymers under varying strain rates and triaxial states of stress. Plast. Rubber Compos. 2001, 30, 82–87. [Google Scholar] [CrossRef]
- Hizoum, K.; Rémond, Y.; Bahlouli, N.; Oshmyan, V.; Patlazhan, S.; Ahzi, S. Non linear strain rate dependency and unloading behavior of semi-crystalline polymers. Oil Gas Sci. Technol. 2006, 61, 743–749. [Google Scholar] [CrossRef]
- Fan, Y.; Osetskiy, Y.N.; Yip, S.; Yildiz, B. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc. Natl. Acad. Sci. USA 2013, 110, 17756–17761. [Google Scholar] [CrossRef]
- Brown, E.N.; Rae, P.J.; Gray, G.T. The Influence of Temperature and Strain Rate on the Tensile and Compressive Constitutive Response of Four Fluoropolymers. J. Phys. IV 2006, 134, 935–940. [Google Scholar] [CrossRef]
- Richeton, J.; Ahzi, S.; Daridon, L.; Rémond, Y. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 2005, 46, 6035–6043. [Google Scholar] [CrossRef]
- Rietsch, F.; Bouette, B. The compression yield behaviour of polycarbonate over a wide range of strain rates and temperatures. Eur. Polym. J. 1990, 26, 1071–1075. [Google Scholar] [CrossRef]
- Xiao, C.; Jho, J.Y.; Yee, A.F. Correlation between the Shear Yielding Behavior and Secondary Relaxations of Bisphenol A Polycarbonate and Related Copolymers. Macromolecules 1994, 27, 2761–2768. [Google Scholar] [CrossRef]
- Chen, L.P.; Yee, A.F.; Moskala, E.J. The molecular basis for the relationship between the secondary relaxation and mechanical properties of a series of polyester copolymer glasses. Macromolecules 1999, 32, 5944–5955. [Google Scholar] [CrossRef]
- Brulé, B.; Halary, J.L.; Monnerie, L. Molecular analysis of the plastic deformation of amorphous semi-aromatic polyamides. Polymer 2001, 42, 9073–9083. [Google Scholar] [CrossRef]
- Rana, D.; Sauvant, V.; Halary, J.L. Molecular analysis of yielding in pure and antiplasticized epoxy-amine thermosets. J. Mater. Sci. 2002, 37, 5267–5274. [Google Scholar] [CrossRef]
- Ingram, J.; Zhou, Y.; Jeelani, S.; Lacy, T.; Horstemeyer, M.F. Effect of strain rate on tensile behavior of polypropylene and carbon nanofiber filled polypropylene. Mater. Sci. Eng. A 2008, 489, 99–106. [Google Scholar] [CrossRef]
- Jacob, G.C.; Starbuck, J.M.; Fellers, J.F.; Simunovic, S.; Boeman, R.G. Strain rate effects on the mechanical properties of polymer composite materials. J. Appl. Polym. Sci. 2004, 94, 296–301. [Google Scholar] [CrossRef]
- Pfaller, S.; Rahimi, M.; Possart, G.; Steinmann, P.; Müller-Plathe, F.; Böhm, M.C. An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Comput. Methods Appl. Mech. Eng. 2013, 260, 109–129. [Google Scholar] [CrossRef]
- Cao, F.; Jana, S.C. Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 2007, 48, 3790–3800. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Chen, X.; Qi, H.-K.; Huang, J.-H.; Luo, M.-B. A novel shift in the glass transition temperature of polymer nanocomposites: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2021, 23, 12216–12225. [Google Scholar] [CrossRef]
- Xia, W.; Song, J.; Jeong, C.; Hsu, D.D.; Phelan, F.R., Jr.; Douglas, J.F.; Keten, S. Energy-renormalization for achieving temperature transferable coarse-graining of polymer dynamics. Macromolecules 2017, 50, 8787–8796. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.A.; Ataya, S.; Silberschmidt, V. V Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling. Polym. Test. 2017, 58, 86–95. [Google Scholar] [CrossRef]
- Cai, W.; Wang, P. Fractional modeling of temperature-dependent mechanical behaviors for glassy polymers. Int. J. Mech. Sci. 2022, 232, 107607. [Google Scholar] [CrossRef]
- Richeton, J.; Ahzi, S.; Vecchio, K.S.; Jiang, F.C.; Makradi, A. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 2007, 44, 7938–7954. [Google Scholar] [CrossRef]
- Sharifzadeh, E.; Cheraghi, K. Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mech. Mater. 2021, 160, 103990. [Google Scholar] [CrossRef]
- Liu, T.T.; Wang, X. Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments. Phys. Lett. A 2007, 365, 144–148. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Wang, X. Effect of environmental temperatures on elastic properties of single-walled carbon nanotube. J. Therm. Stress. 2007, 30, 1195–1210. [Google Scholar] [CrossRef]
- Drozdov, A.D. Viscoelastoplasticity of amorphous glassy polymers. Eur. Polym. J. 2000, 36, 2063–2074. [Google Scholar] [CrossRef]
- Murayama, T.; Bell, J.P. Relation between the network structure and dynamic mechanical properties of a typical amine-cured epoxy polymer. J. Polym. Sci. Part A-2 Polym. Phys. 1970, 8, 437–445. [Google Scholar] [CrossRef]
- Mahieux, C.A.; Reifsnider, K.L. Property modeling across transition temperatures in polymers: A robust stiffness–temperature model. Polymer 2001, 42, 3281–3291. [Google Scholar] [CrossRef]
- Acar, A.; Colak, O.; Correia, J.P.M.; Ahzi, S. Cooperative-VBO model for polymer/graphene nanocomposites. Mech. Mater. 2018, 125, 1–13. [Google Scholar] [CrossRef]
- Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar] [CrossRef]
- Tandon, G.P.; Weng, G.J. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos. 1984, 5, 327–333. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Liu, H.-H.; Peng, W.-W.; Hou, L.-C.; Wang, X.-C.; Zhang, X.-X. The production of a melt-spun functionalized graphene/poly(ε-caprolactam) nanocomposite fiber. Compos. Sci. Technol. 2013, 81, 61–68. [Google Scholar] [CrossRef]
- Reda, H.; Tanis, I.; Harmandaris, V. Distribution of Mechanical Properties in Poly(ethylene oxide)/silica Nanocomposites via Atomistic Simulations: From the Glassy to the Liquid State. Macromolecules 2024, 57, 3967–3984. [Google Scholar] [CrossRef]
- Reda, H.; Chazirakis, A.; Behbahani, A.F.; Savva, N.; Harmandaris, V. Revealing the Role of Chain Conformations on the Origin of the Mechanical Reinforcement in Glassy Polymer Nanocomposites. Nano Lett. 2024, 24, 148–155. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Zimmerman, J.A.; WebbIII, E.B.; Hoyt, J.J.; Jones, R.E.; Klein, P.A.; Bammann, D.J. Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 2004, 12, S319. [Google Scholar] [CrossRef]
- Reda, H.; Chazirakis, A.; Behbahani, A.F.; Savva, N.; Harmandaris, V. Mechanical properties of glassy polymer nanocomposites via atomistic and continuum models: The role of interphases. Comput. Methods Appl. Mech. Eng. 2022, 395, 114905. [Google Scholar] [CrossRef]
- Reda, H.; Chazirakis, A.; Savva, N.; Ganghoffer, J.-F.; Harmandaris, V. Gradient of mechanical properties in polymer nanocomposites: From atomistic scale to the strain gradient effective continuum. Int. J. Solids Struct. 2022, 256, 111977. [Google Scholar] [CrossRef]
- Walley, S.M.; Field, J.E.; Pope, R.H.; Safford, N.A. The rapid deformation behaviour of various polymers. J. Phys. III 1991, 1, 1889–1925. [Google Scholar] [CrossRef]
- Siviour, C.R.; Jordan, J.L. High strain rate mechanics of polymers: A review. J. Dyn. Behav. Mater. 2016, 2, 15–32. [Google Scholar] [CrossRef]
- Fischer, F.D.; Waitz, T.; Vollath, D.; Simha, N.K. On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 2008, 53, 481–527. [Google Scholar] [CrossRef]
- Pandey, Y.N.; Doxastakis, M. Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. J. Chem. Phys. 2012, 136, 94901. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
Temperature (K) | Strain Rate (fs−1) | ||||||
---|---|---|---|---|---|---|---|
1.0 × 10−7 | 5.0 × 10−7 | 1.0 × 10−6 | 5.0 × 10−6 | 1.0 × 10−5 | 5.0 × 10−5 | 1.0 × 10−4 | |
= 1.0 × 104 | 103 | 103 | 102 | 102 | 101 | 101 | |
150 | - | - | TE 3 | - | TE | - | - |
220 | SRE 2 | SRE | SRE/TE | SRE | SRE/TE | SRE | SRE |
250 | - | - | TE | - | TE | - | - |
270 | SRE | SRE | SRE/TE | SRE | SRE/TE | SRE | SRE |
300 | - | - | TE | - | TE | - | - |
330 | SRE | SRE | SRE/TE | SRE | SRE/TE | SRE | SRE |
350 | - | - | TE | - | TE | - | - |
370 | SRE | SRE | SRE/TE | SRE | SRE/TE | SRE | SRE |
400 | - | - | TE | - | TE | - | - |
Weibull Modulus (m) | |||||
---|---|---|---|---|---|
Based on Young’s Modulus Formulation | Based on Poisson’s Ratio Formulation | ||||
For Global Results | For Local Results | For Global Results | |||
Interphase | Matrix | ||||
Strain rate effect | T = 220 K | 1.80 | 1.47 | 2.02 | 5.90 |
T = 270 K | 2.26 | 2.47 | 6.35 | 2.47 | |
T = 330 K | 7.40 | 9.95 | 16.70 | −4.91 | |
Temperature effect | 1.0 × 10−5 fs−1 | 4.30 | 3.95 | 4.26 | 3.79 |
1.0 × 10−6 fs−1 | 6.20 | 5.00 | 5.60 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, A.A.; Reda, H.; Harmandaris, V. Unraveling the Effect of Strain Rate and Temperature on the Heterogeneous Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations and Continuum Models. Polymers 2024, 16, 2530. https://doi.org/10.3390/polym16172530
Youssef AA, Reda H, Harmandaris V. Unraveling the Effect of Strain Rate and Temperature on the Heterogeneous Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations and Continuum Models. Polymers. 2024; 16(17):2530. https://doi.org/10.3390/polym16172530
Chicago/Turabian StyleYoussef, Ali A., Hilal Reda, and Vagelis Harmandaris. 2024. "Unraveling the Effect of Strain Rate and Temperature on the Heterogeneous Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations and Continuum Models" Polymers 16, no. 17: 2530. https://doi.org/10.3390/polym16172530
APA StyleYoussef, A. A., Reda, H., & Harmandaris, V. (2024). Unraveling the Effect of Strain Rate and Temperature on the Heterogeneous Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations and Continuum Models. Polymers, 16(17), 2530. https://doi.org/10.3390/polym16172530