Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copolyesters
2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.5. Gel Permeation Chromatography (GPC)/Size Exclusion Chromatography (SEC)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Broadband Dielectric Spectroscopy (BDS)
2.8. Thermogravimetric Analysis (TGA)
2.9. Pyrolysis–Gas Chromatography-Mass Spectrometry Analysis (Py–GC/MS)
3. Results and Discussion
3.1. Materials—Scope—Structure
3.2. Glass Transition—Thermal Events
3.3. Molecular Dynamics
3.4. Thermal Stability and Degradation Mechanism of Copolymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearce, A.K.; O’Reilly, R.K. Polymers for biomedical applications: The importance of hydrophobicity in directing biological interactions and application efficacy. Biomacromolecules 2021, 22, 4459–4469. [Google Scholar] [CrossRef] [PubMed]
- Rowan, S.J. 100th Anniversary of Macromolecular Science Viewpoints. ACS Macro Lett. 2021, 10, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.; Roy, S.K. Industrial Polymers, Specialty Polymers, and Their Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B 2009, 27, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Kalali, E.N.; Lotfian, S.; Shabestari, M.E.; Khayatzadeh, S.; Zhao, C.; Nezhad, H.Y. A critical review of the current progress of plastic waste recycling technology in structural materials. Curr. Opin. Green Sustain. Chem. 2023, 40, 100763. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.G.C.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Mori, R. Replacing all petroleum-based chemical products with natural biomass-based chemical products: A tutorial review. RSC Sustain. 2023, 1, 179–212. [Google Scholar] [CrossRef]
- Sisti, L.; Totaro, G.; Marchese, P. PBS Makes Its Entrance into the Family of Biobased Plastics; John Wiley & Sons: Hobocan, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Lendlein, A.; Sisson, A. (Eds.) Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Tanaka, M.; Sato, K.; Kitakami, E.; Kobayashi, S.; Hoshiba, T.; Fukushima, K. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym. J. 2015, 47, 114–121. [Google Scholar] [CrossRef]
- Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34, 605–640. [Google Scholar] [CrossRef]
- Kim, N.; Lee, K. Environmental consciousness, purchase intention, and actual purchase behavior of eco-friendly products: The moderating impact of situational context. Int. J. Environ. Res. Public Health 2023, 20, 5312. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Norton, M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chem. 2020, 22, 6310–6322. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.X. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Tazmeen, T.; Mir, F.Q. Sustainability through materials: A review of green options in construction. Results Surf. Interfaces 2024, 14, 100206. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic acid) a versatile biobased polymer of next decades with multifunctional properties. From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Ainali, N.M.; Kalaronis, D.; Evgenidou, E.; Kyzas, G.Z.; Bobori, D.C.; Kaloyianni, M.; Yang, X.; Bikiaris, D.N.; Lambropoulou, D.A. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Sci. Total Environ. 2022, 832, 155014. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z. Thinking green: Sustainable polymers from renewable resources. Polymers 2018, 10, 952. [Google Scholar] [CrossRef]
- Lahcini, M.; Qayouh, H.; Yashiro, T.; Simon, P.; Kricheldorf, H.R. Syntheses of poly(butylene succinate) by means of non-toxic catalysts. J. Macrom. Sci. A Pure Appl. Chem. 2010, 47, 503–509. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Papageorgiou, D.G.; Terzopoulou, Z.; Bikiaris, D.N. Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 2016, 83, 202–229. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Lacerda, T.M. Polymers from renewable resources: Macromolecular materials for the twenty-first century? Macromol. Eng. 2022, in press. [CrossRef]
- Psochia, E.; Papadopoulos, L.; Gkiliopoulos, D.J.; Francone, A.; Grigora, M.E.; Tzetzis, D.; Vieira de Castro, J.; Neves, N.M.; Triantafyllidis, K.S.; Sotomayor Torres, C.M.; et al. Bottom-up development of nanoimprinted PLLA composite films with enhanced antibacterial properties for smart packaging applications. Macromol 2021, 1, 49–63. [Google Scholar] [CrossRef]
- Zhang, T.; Howell, B.A.; Dumitrascu, A.; Martin, S.J.; Smith, P.B. Synthesis and characterization of glycerol-adipic acid hyperbranched polyesters. Polymer 2014, 55, 5065–5072. [Google Scholar] [CrossRef]
- Robert, T.; Friebel, S. Itaconic acid—A versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016, 18, 2922–2934. [Google Scholar] [CrossRef]
- Kunduru, K.R.; Hogerat, R.; Chosal, K.; Shaheem-Mualim, M.; Farah, S. Renewable polyol-based biodegradable polyesters as greener plastics for industrial applications. Chem. Eng. J. 2023, 459, 141211. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: Recent progress and future prospects. Prog. Polym. Sci. 2021, 120, 101430. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R. Compostability of polymers. Polym. Int. 2008, 57, 793–804. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Lazaridou, M.; Klonos, P.A.; Barmpa, E.D.; Kyritsis, A.; Bikiaris, D.N. Thermal transitions and molecular mobility in polymeric blends based on polylactide (PLA) and poly(3,3-ethylene dithiodipropionate) (PEDPA). Polymer 2023, 277, 125970. [Google Scholar] [CrossRef]
- Engler, L.G.; Farias, N.C.; Crespo, J.S.; Gately, N.M.; Major, I.; Pezzoli, R.; Devine, D.M. Designing sustainable polymer blends: Tailoring mechanical properties and degradation gehaviour in PHB/PLA/PCL blends in a seawater environment. Polymers 2023, 15, 2874. [Google Scholar] [CrossRef] [PubMed]
- Chrysafi, I.; Pavlidou, E.; Christodoulou, E.; Vourlias, G.; Klonos, P.A.; Kyritsis, A.; Bikiaris, D.N. Effects of poly(hexylene succinate) amount on the crystallization and molecular mobility of poly(lactic acid) copolymers. Thermochim. Acta 2021, 698, 178883. [Google Scholar] [CrossRef]
- Atkinson, R.L.; Monaghan, O.R.; Elsmore, M.T.; Topham, P.D.; Toolan, D.T.W.; Derry, M.J.; Taresco, V.; Stockman, R.A.; De Focatiis, D.S.A.; Irvine, D.J.; et al. RAFT polymerisation of renewable terpene (meth)acrylates and the convergent synthesis of methacrylate–acrylate–methacrylate triblock copolymers. Polym. Chem. 2021, 12, 3177–3189. [Google Scholar] [CrossRef]
- Klonos, P.A.; Terzopoulou, Z.; Zamboulis, A.; Valera, M.A.; Mangas, A.; Kyritsis, A.; Pissis, P.; Bikiaris, D.N. Direct and indirect effects on molecular mobility in renewable polylactide–poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. Soft Matter 2022, 18, 3725–3737. [Google Scholar] [CrossRef] [PubMed]
- Klonos, P.A.; Bikiaris, N.D.; Zamboulis, A.; Valera, M.A.; Mangas, A.; Kyritsis, A.; Terzopoulou, Z. Segmental mobility in sustainable copolymers based on poly(lactic acid) blocks built onto poly(butylene succinate) in situ. Soft Matter 2023, 19, 7846–7858. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, C.; Bikiaris, N.D.; Zamboulis, A.; Kyritsis, A.; Majdoub, M.; Klonos, P.A. Crystallization and molecular mobility in renewable semicrystalline copolymers based on polycaprolactone and polyisosorbide. Soft Matter 2022, 18, 9216–9230. [Google Scholar] [CrossRef]
- Tang, S.; Lin, B.L.; Tonks, I.; Eagan, J.M.; Ni, X.; Nozaki, K. Sustainable copolymer synthesis from carbon dioxide and butadiene. Chem. Rev. 2024, 124, 3590–3607. [Google Scholar] [CrossRef] [PubMed]
- Xie, F. Sustainable polymer composites: Functionality and applications. Funct. Compos. Mater. 2021, 2, 15. [Google Scholar] [CrossRef]
- Hejna, A. Renewable, degradable, and recyclable polymer composites. Polymers 2023, 15, 1769. [Google Scholar] [CrossRef] [PubMed]
- Paraye, P.; Sarviya, R.M. Advances in polymer composites, manufacturing, recycling, and sustainable practices. Polym. Plast. Technol. Mater. 2024, 63, 1474–1497. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Koumentakou, I.; Samiotaki, C.; Meimaroglou, D.; Varytimidou, D.; Karatza, A.; Kalantzis, Z.; Roussou, M.; Bikiaris, R.D.; Papageorgiou, G.Z. Recent advances in the investigation of poly(lactic acid) (PLA) nanocomposites: Incorporation of various nanofillers and their properties and applications. Polymers 2023, 15, 1196. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Zhai, S.; Zhang, P.; Xian, Y.; Zeng, J.; Shi, B. Effective thermal conductivity of polymer composites: Theoretical models and simulation models. Int. J. Heat Mass Transf. 2018, 117, 358–374. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; De Oliveira, T.V. Biodegradation of polymers: Stages, measurement, standards and prospects. Macromol 2023, 3, 371–399. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Zamboulis, A.; Bikiaris, D.N.; Valera, M.A.; Mangas, A. Synthesis, properties, and enzymatic hydrolysis of poly(lactic acid)-co-poly(propylene adipate) block copolymers prepared by reactive extrusion. Polymers 2021, 13, 4121. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Klonos, P.A.; Kyritsis, A.; Barmpalexis, P. Structural and thermodynamical investigation in triblock copolymers of polylactide and poly(ethylene glycol), PLA-b-PEG-b-PLA, envisaged for medical applications. Mater. Today Commun. 2024, 38, 107799. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Ranucci, E.; Liu, Y.; Söderqvist Lindblad, M.; Albertson, A.C. New biodegradable polymers from renewable resources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol. Rapid Commun. 2000, 21, 680–684. [Google Scholar] [CrossRef]
- Hartlep, H.; Hussmann, W.; Prayitno, N.; Meynial-Salles, I.; Zeng, A.P. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl. Microbiol. Biotechnol. 2002, 60, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, D.N.; Papageorgiou, G.Z.; Papadimitriou, S.A.; Karavas, E.; Avgoustakis, K. Novel biodegradable polyester poly(propylene succinate): Synthesis and application in the preparation of solid dispersions and nanoparticles of a water-soluble drug. AAPS PharmSciTech 2009, 10, 138–146. [Google Scholar] [CrossRef]
- Qu, D.; Sun, S.; Gao, H.; Bai, Y.; Tang, Y. Biodegradable copolyester poly(butylene-co-isosorbide succinate) as hot-melt adhesives. RSC Adv. 2019, 9, 11476–11483. [Google Scholar] [CrossRef]
- Smiga-Matuszowicz, M.; Korytkowska-Walach, A.; Nowak, B.; Pilawka, R.; Lesiak, M.; Sieron, A.L. Poly(isosorbide succinate)-based in situ forming implants as potential systems for local drug delivery: Preliminary studies. Mater. Sci. Eng. C 2018, 91, 311–317. [Google Scholar] [CrossRef]
- Fleche, G.; Huchette, M. Isosorbide. Preparation, properties and chemistry. Starch Stärke 1986, 38, 26–30. [Google Scholar] [CrossRef]
- Fang, W.; Xu, F.; Zhang, Y.; Zhang, Z.; Yang, Z.; Wang, W.; He, H.; Luo, Y. Acylamido-based anion-functionalized ionic liquids for efficient synthesis of poly(isosorbide carbonate). Catal. Sci. Technol. 2022, 12, 1756–1765. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Wu, G.H.; Guo, W.; Guan, X.F.; Zhang, M.Y.; Zhang, H.X. An environmentally sustainable isosorbide-based plasticizer for biodegradable poly(butylene succinate). J. Polym. Eng. 2022, 42, 331–342. [Google Scholar] [CrossRef]
- Laanesoo, S.; Bonjour, O.; Parve, J.; Parve, O.; Matt, L.; Vares, L.; Jannasch, P. Poly(alkanoyl isosorbide methacrylate)s: From amorphous to semicrystalline and liquid crystalline biobased materials. Biomacromolecules 2021, 22, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhu, W.; Zhou, W.; Li, C.; Zhang, D.; Xiao, Y.; Zheng, L. A designed synthetic strategy toward poly(isosorbide terephthalate) copolymers: A combination of temporary modification, transesterification, cyclization and polycondensation. Polym. Chem. 2015, 6, 7470–7479. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Kasmi, N.; Tsanaktsis, V.; Doulakas, N.; Bikiaris, D.N.; Achilias, D.A.; Papageorgiou, G.Z. Synthesis and Characterization of Bio-Based Polyesters: Poly(2-methyl-1,3-propylene-2,5-furanoate), Poly(isosorbide-2,5-furanoate), Poly(1,4-cyclohexanedimethylene-2,5-furanoate). Materials 2017, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Davey, C.J.E.; Van der Maas, K.; Van Putten, R.J.; Tietema, A.; Parsons, J.R.; Gruter, G.J.M. Biodegradability of novel high Tg poly(isosorbide-co-1,6-hexanediol) oxalate polyester in soil and marine environments. Sci. Total Environ. 2022, 815, 152781. [Google Scholar] [CrossRef]
- Pico, Y.; Barcelo, D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics. Trends Anal. Chem. 2020, 130, 115964. [Google Scholar] [CrossRef]
- Yao, S.F.; Chen, X.T.; Ye, H.M. Investigation of structure and crystallization behavior of poly(butylene succinate) by Fourier transform infrared spectroscopy. J. Phys. Chem. B 2017, 121, 9476–9485. [Google Scholar] [CrossRef] [PubMed]
- De Matos Costa, A.R.; Crocitti, A.; de Carvalho, L.H.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers 2020, 12, 2317. [Google Scholar] [CrossRef]
- Yamadera, R.; Murano, M. The determination of randomness in copolyesters by high resolution nuclear magnetic resonance. J. Polym. Sci. A-1 Polym. Chem. 1967, 5, 2259–2268. [Google Scholar] [CrossRef]
- Panayiotou, C.G. Glass transition temperatures in polymer mixtures. Polym. J. 1986, 18, 895–902. [Google Scholar] [CrossRef]
- Wurm, A.; Ismail, M.; Kretzschmar, B.; Pospiech, D.; Schick, C. Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 2010, 43, 1480–1487. [Google Scholar] [CrossRef]
- Sargsyan, A.; Tonoyan, A.; Davtyan, S.; Schick, C. The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur. Polym. J. 2007, 43, 3113–3127. [Google Scholar] [CrossRef]
- Soccio, M.; Nogales, A.; Lotti, N.; Munari, A.; Ezquerra, T.A. Evidence of early stage precursors of polymer crystals by dielectric spectroscopy. Phys. Rev. Lett. 2007, 98, 037801. [Google Scholar] [CrossRef] [PubMed]
- Klonos, P.A.; Papadopoulos, L.; Kasimatis, M.; Iatrou, H.; Kyritsis, A.; Bikiaris, D.N. Synthesis, crystallization, structure memory effects, and molecular dynamics of biobased and renewable poly(n-alkylene succinate)s with n from 2 to 10. Macromolecules 2021, 54, 1106–1119. [Google Scholar] [CrossRef]
- Tai, H.J. Dielectric spectroscopy of poly(butylene succinate) films. Polymer 2007, 48, 4558–4566. [Google Scholar] [CrossRef]
- Schönhals, A.; Szymoniak, P. Dynamics of Composite Materials, 1st ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kremer, F.; Schönhals, A. (Eds.) Broadband Dielectric Spectroscopy; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics II. Direct current characteristics. J. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Richert, R.; Agapov, A.; Sokolov, A.P. Appearance of a Debye process at the conductivity relaxation frequency of a viscous liquid. J. Chem. Phys. 2011, 134, 104508. [Google Scholar] [CrossRef]
- Tammann, G.; Hesse, W. Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257. [Google Scholar] [CrossRef]
- Cerveny, S.; Schwartz, G.A.; Otegui, J.; Colmenero, J.; Loichen, J.; Westermann, S. Dielectric study of hydration water in silica nanoparticles. J. Phys. Chem. C 2012, 116, 24340–24349. [Google Scholar] [CrossRef]
- Cerveny, S.; Colmenero, J.; Alegría, A. Dielectric investigation of the low-temperature water dynamics in the poly(vinyl methyl ether)/H2O system. Macromolecules 2005, 38, 7056–7063. [Google Scholar] [CrossRef]
- Klonos, P.A. Dynamics of molecules physically adsorbed onto metal oxide nanoparticles: Similarities between water and a flexible polymer. J. Phys. Chem. C 2018, 122, 28825–28829. [Google Scholar] [CrossRef]
- Böhmer, R.; Ngai, K.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Delpouve, N.; Saiter, A.; Dargent, E. Cooperativity length evolution during crystallization of poly(lactic acid). Eur. Polym. J. 2011, 47, 2414–2423. [Google Scholar] [CrossRef]
- Aniya, M.; Ikeda, M. A Study on the Correlation between fragility and cooperativity in wide class of glass-forming substances. Phys. Procedia 2013, 48, 113–119. [Google Scholar] [CrossRef]
- Bartos, J.; Kristiak, J. Free volume aspects of the strong–fragile classification of polymer liquids. J. Non-Cryst. Solids 1998, 235–237, 293–295. [Google Scholar] [CrossRef]
- Bikiaris, R.D.; Ainali, N.M.; Christodoulou, E.; Nikolaidis, N.; Lambropoulou, D.; Papageorgiou, G.Z. Thermal stability and decomposition mechanism of poly(alkylene succinate)s. Macromol 2021, 2, 58–77. [Google Scholar] [CrossRef]
- Chrysafi, I.; Ainali, N.M.; Xanthopoulou, E.; Zamboulis, A.; Bikiaris, D.N. Thermal degradation mechanism and decomposition kinetic studies of poly(ethylene succinate)/hemp fiber composites. J. Compos. Sci. 2023, 7, 216. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Tarani, E.; Ainali, N.M.; Chrissafis, K.; Wurzer, C.; Masek, O.; Bikiaris, D.N. The effect of biochar addition on thermal stability and decomposition mechanism of poly(butylene succinate) bionanocomposites. Molecules 2023, 28, 5330. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Carroccio, S. Thermo-oxidative processes in biodegradable poly(butylene succinate). Polym. Degr. Stabil. 2009, 94, 1825–1838. [Google Scholar] [CrossRef]
Microstructure | |||||||
---|---|---|---|---|---|---|---|
Sample Code Name | Is/PESu Ratio | [η] (dL/g) | Mn (g/mol) | PDI | LEGSu | LIsSu | R |
PESu | 0/100 | 0.51 | 83 k | 1.71 | - | - | - |
co045 | 4.5/95.5 | 0.56 | 62 k | 1.84 | - | - | - |
co096 | 9.6/90.4 | 0.43 | 39 k | 2.15 | - | - | - |
co186 | 18.6/81.4 | 0.50 | 33 k | 2.32 | - | - | - |
co350 | 35/65 | 0.18 | 12 k | 1.83 | 2.7 | 1.7 | 0.97 |
co500 | 50/50 | 0.28 | 8 k | 1.97 | 1.9 | 2.1 | 1.02 |
co750 | 75/25 | 0.17 | 7 k | 1.78 | 1.4 | 3.9 | 0.99 |
PISSu | 100/0 | 0.16 | 5 k | 1.81 | - | - | - |
DSC Cooling | DSC Heating | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample Code Name | Tc (°C) | ΔHc (J/g) | Tg (°C) | Tg (°C) | Δcp (J/g∙K) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) |
PESu | 34 | 1 | −16 | −13 | 0.65 | 41/81 | 51 | 102 | 53 |
co045 | - | - | −12 | −9 | 0.63 | 61 | 12 | 94 | 12 |
co096 | - | - | −9 | −6 | 0.60 | - | - | - | - |
co186 | - | - | −2 | 1 | 0.59 | - | - | - | - |
co350 | - | - | 3 | 5 | 0.56 | - | - | - | - |
co500 | - | - | 19 | 20 | 0.52 | - | - | - | - |
co750 | - | - | 40 | 43 | 0.49 | - | - | - | - |
PISSu | - | - | 51 | 53 | 0.46 | - | - | - | - |
Rt (min.) | MW (amu) | Assigned Structure | |||||||
---|---|---|---|---|---|---|---|---|---|
PISSu | co750 | co500 | co350 | co186 | co096 | co045 | PESu | ||
1.72 | 1.72 | 1.68 | 1.67 | 1.64 | 1.77 | 1.78 | 1.78 | 44 | CO2 or acetaldehyde |
1.92 | 1.91 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 86 | (S)-tetrahydrofuran-3-ol or (R)-tetrahydrofuran-3-ol |
5.20 | 5.11 | 5.04 | 5.00 | 4.91 | 4.64 | n.d. | n.d. | 110 | 3a,6a-dihydrofuro[3,2-b]furan |
n.d. | n.d. | 6.32 | 6.35 | 6.34 | 6.42 | 6.28 | 6.33 | 118 | propanoic acid, 2-hydroxyethyl ester |
n.d. | n.d. | 9.20 | 9.20 | 9.22 | 9.24 | 9.25 | 9.21 | 100 | succinic anhydride |
9.67 | 9.69 | 9.69 | 9.50 | 9.49 | n.d. | n.d. | n.d. | 126 | (3R)-hexahydrofuro[3,2-b]furan-3-ol or (3S)-hexahydrofuro[3,2-b]furan-3-ol |
n.d. | n.d. | n.d. | 13.47 | 13.49 | 13.51 | 13.25 | 13.40 | 172 | butanedioic acid, diethyl ester |
13.42 | 13.36 | 13.32 | 13.49 | 13.51 | 13.50 | 13.55 | n.d. | 146 | hexahydrofuro[3,2-b]furan-3,6-diol (isosorbide) |
14.70 | 14.60 | 14.64 | 14.53 | 14.45 | 14.49 | n.d. | n.d. | 142 | (3S)-3-methoxyhexahydrofuro[3,2-b]furan |
16.05 | 15.80 | 15.87 | 15.61 | 15.49 | n.d. | n.d. | n.d. | 160 | (3R,6S)-6-methoxyhexahydrofuro[3,2-b]furan-3-ol |
n.d. | n.d. | 16.94 | 16.89 | 16.91 | 16.83 | 16.72 | 16.61 | 202 | allyl (2-hydroxyethyl) succinate |
n.d. | n.d. | 18.71 | 18.71 | 18.71 | 18.72 | 18.63 | 18.62 | 188 | 2-hydroxyethyl vinyl succinate |
n.d. | 19.81 | 19.88 | 19.83 | 19.80 | 19.75 | n.d. | n.d. | 229 | (((3S,6R)-6-hydroxyhexahydrofuro[3,2-b]furan-3-yl)oxy)methyl acrylate |
n.d. | 21.15 | 21.36 | 21.42 | 21.47 | 21.56 | 21.40 | 21.49 | 260 | 2-(acryloyloxy)ethyl (2-hydroxyethyl) succinate |
n.d. | n.d. | 23.71 | 23.72 | 23.74 | 23.76 | 23.70 | 23.73 | 290 | 2-hydroxyethyl (2-((4 oxobutanoyl)oxy)ethyl) succinate |
n.d. | 24.03 | 24.10 | 24.10 | 24.08 | n.d. | n.d. | n.d. | 306 | 4-((((3S,6R)-6-(hydroxymethoxy)hexahydrofuro[3,2-b]furan-3-yl)oxy)methoxy)-4-oxobutanoic acid |
n.d. | 26.21 | 26.25 | 26.24 | n.d. | n.d. | n.d. | n.d. | 328 | 2,3,3a,6a-tetrahydrofuro[3,2-b]furan-3-yl (2-((vinyloxy)methoxy)ethyl) succinate |
n.d. | n.d. | 28.95 | 29.02 | 29.05 | 29.10 | 29.10 | 29.01 | 332 | 2-((4-(2-hydroxyethoxy)-4-oxobutanoyl)oxy)ethyl vinyl succinate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouyahya, C.; Klonos, P.A.; Zamboulis, A.; Xanthopoulou, E.; Ainali, N.M.; Majdoub, M.; Kyritsis, A.; Bikiaris, D.N. Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide. Polymers 2024, 16, 2173. https://doi.org/10.3390/polym16152173
Bouyahya C, Klonos PA, Zamboulis A, Xanthopoulou E, Ainali NM, Majdoub M, Kyritsis A, Bikiaris DN. Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide. Polymers. 2024; 16(15):2173. https://doi.org/10.3390/polym16152173
Chicago/Turabian StyleBouyahya, Chaima, Panagiotis A. Klonos, Alexandra Zamboulis, Eleftheria Xanthopoulou, Nina Maria Ainali, Mustapha Majdoub, Apostolos Kyritsis, and Dimitrios N. Bikiaris. 2024. "Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide" Polymers 16, no. 15: 2173. https://doi.org/10.3390/polym16152173
APA StyleBouyahya, C., Klonos, P. A., Zamboulis, A., Xanthopoulou, E., Ainali, N. M., Majdoub, M., Kyritsis, A., & Bikiaris, D. N. (2024). Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide. Polymers, 16(15), 2173. https://doi.org/10.3390/polym16152173