Spectroscopic and Thermal Characterisation of Interpenetrating Hydrogel Networks (IHNs) Based on Polymethacrylates and Pluronics, and Their Physicochemical Stability under Aqueous Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Network Homopolymers and IHNs
2.3. Modulated Temperature Differential Scanning Calorimetry (MTDSC) of IHNs
2.4. Dynamic Mechanical Analysis (DMA) of IHNs
2.5. Raman Spectroscopy of IHNs
2.6. Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy of IHNs
2.7. Differential Scanning Calorimetry (DSC) of Pluronic Solutions and Hydrated IHNs
2.8. Retention of Pluronic Polymers within IHNs
2.9. Statistics
3. Results and Discussion
3.1. Thermal and Spectroscopic Properties of Pluronic Block Copolymers
3.2. Thermal and Spectroscopic Properties of IHNs of p(HEMA) and Pluronic Block Co-Polymers
3.3. Thermal and Spectroscopic Properties of IHNs of p(MAA) and Pluronic Block Co-Polymers
3.4. Thermal Properties and Loss of Pluronic Block Copolymers from IHNs Following Immersion in Aqueous Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hameed, H.; Faheem, S.; Paiva-Santos, A.; Sarwar, H.; Jamshaid, M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, X.; Xu, C.; Wang, L.; Xia, Y. Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. J. Polym. Sci. 2022, 60, 2525–2542. [Google Scholar] [CrossRef]
- Dai, S.; Gao, Y.; Duan, L. Recent advances in hydrogel coatings for urinary catheters. J. Appl. Polym. Sci. 2023, 140, e53701. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 2303326. [Google Scholar] [CrossRef]
- Xu, F.; Dawson, C.; Lamb, M.; Mueller, E.; Stefanek, E.; Akbari, M.; Hoare, T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front. Bioeng. Biotechnol. 2022, 10, 849831. [Google Scholar] [CrossRef]
- Saint, S.; Greene, T.; Krein, S.L.; Rogers, M.A.M.; Ratz, D.; Fowler, K.E.; Edson, B.S.; Watson, S.R.; Meyer-Lucas, B.; Masuga, M.; et al. A Program to Prevent Catheter-Associated Urinary Tract Infection in Acute Care. N. Engl. J. Med. 2016, 374, 2111–2119. [Google Scholar] [CrossRef]
- Meddings, J.; Manojlovich, M.; Ameling, J.M.; Olmsted, R.N.; Rolle, A.J.; Greene, M.T.; Ratz, D.; Snyder, A.; Saint, S. Quantitative Results of a National Intervention to Prevent Hospital-Acquired Catheter-Associated Urinary Tract Infection A Pre-Post Observational Study. Ann. Intern. Med. 2019, 171, S38–S44. [Google Scholar] [CrossRef]
- Van Decker, S.G.; Bosch, N.; Murphy, J. Catheter-associated urinary tract infection reduction in critical care units: A bundled care model. BMJ Open Qual. 2021, 10, e001534. [Google Scholar] [CrossRef]
- Yang, K.R.; Han, Q.; Chen, B.P.; Zheng, Y.H.; Zhang, K.S.; Li, Q.; Wang, J.C. Antimicrobial hydrogels: Promising materials for medical application. Int. J. Nanomed. 2018, 13, 2217–2263. [Google Scholar] [CrossRef]
- Stensballe, J.; Looms, D.; Nielsen, P.N.; Tvede, V. Hydrophilic-coated catheters for intermittent catheterisation reduce urethral microtrauma: A prospective, randomised, participant-blinded, crossover study of three different types of catheters. Eur. Urol. 2005, 48, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, B.; Kempf, M.; Kimble, R.; Supaphol, P.; Cuttle, L. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat and PolyMem Silver®. Burns 2014, 40, 89–96. [Google Scholar] [CrossRef]
- Sung, A.Y.; Kim, T.-H. Optical application of poly(HEMA-co-MMA) containing silver nanoparticles and N,N-dimethylacrylamide. Korean J. Chem. Eng. 2012, 29, 686–691. [Google Scholar] [CrossRef]
- Obradovic, B.; Stojkovska, J.; Jovanovic, Z.; Miskovic-Stankovic, V. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J. Mater. Sci. Mater. Med. 2012, 23, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ng, V.W.L.; Chan, J.M.W.; Sardon, H.; Ono, R.J.; García, J.M.; Yang, Y.Y.; Hedrick, J.L. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Adv. Drug Deliv. Rev. 2014, 78, 46–62. [Google Scholar] [CrossRef]
- Copling, A.; Akantibila, M.; Kumaresan, R.; Fleischer, G.; Cortes, D.; Tripathi, R.S.; Carabetta, V.J.; Vega, S.L. Recent Advances in Antimicrobial Peptide Hydrogels. Int. J. Mol. Sci. 2023, 24, 22. [Google Scholar] [CrossRef]
- Craig, R.A.; McCoy, C.P.; Gorman, S.P.; Jones, D.S. Photosensitisers—The progression from photodynamic therapy to anti-infective surfaces. Expert Opin. Drug Deliv. 2015, 12, 85–101. [Google Scholar] [CrossRef]
- Wang, X.W.; Wang, J.; Yu, Y.; Yu, L.; Wang, Y.X.; Ren, K.F.; Ji, J. A polyzwitterion-based antifouling and flexible bilayer hydrogel coating. Compos. Part B Eng. 2022, 244, 110164. [Google Scholar] [CrossRef]
- Carpa, R.; Farkas, A.; Dobrota, C.; Butiuc-Keul, A. Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels 2023, 9, 278. [Google Scholar] [CrossRef]
- Jones, D.S.; Andrews, G.P.; Gorman, S.P. Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J. Pharm. Pharmacol. 2005, 57, 1251–1259. [Google Scholar] [CrossRef]
- Kazmierska, K.; Szwast, M.; Ciach, T. Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater. Med. 2008, 19, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yang, X.; Wu, F.; Wang, L.; Xiang, K.; Li, P.; Lv, Q.; Tang, J.; Dohlman, A.; Dai, L.; et al. Living fabrication of functional semi-interpenetrating polymeric materials. Nat. Commun. 2021, 12, 3422. [Google Scholar] [CrossRef] [PubMed]
- Nejadnik, M.R.; van der Mei, H.C.; Norde, W.; Busscher, H.J. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials 2008, 29, 4117–4121. [Google Scholar] [CrossRef]
- Stepulane, A.; Rajasekharan, A.K.; Andersson, M. Multifunctional Surface Modification of PDMS for Antibacterial Contact Killing and Drug-Delivery of Polar, Nonpolar, and Amphiphilic Drugs. ACS Appl. Bio Mater. 2022, 5, 5289–5301. [Google Scholar] [CrossRef]
- Auxier, J.A.; Dill, J.K.; Schilke, K.F.; McGuire, J. Blood protein repulsion after peptide entrapment in pendant polyethylene oxide layers. Biotechnol. Appl. Biochem. 2014, 61, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.; Yoshida, M.; Pezzin, S.; Coelho, L. Miscibility and crystallinity of poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Thermochim. Acta 2006, 450, 61–66. [Google Scholar] [CrossRef]
- Rocco, A.; Pereira, R.; Felisberti, M. Miscibility, crystallinity and morphological behavior of binary blends of poly(ethylene oxide) and poly(methyl vinyl ether-maleic acid). Polymer 2001, 42, 5199–5205. [Google Scholar] [CrossRef]
- Cimmino, S.; Dipace, E.; Martuscelli, E.; Silvestre, C. Evaluation of the equilibrium melting temperature and structure analysis of poly(ethylene oxide) poly(methyl methacrylate) blends. Makromol. Chem. Macromol. Chem. Phys. 1990, 191, 2447–2454. [Google Scholar] [CrossRef]
- Andrews, G.; Laverty, T.; Jones, D. Mucoadhesive Polymeric Polyologels Designed for the Treatment of Periodontal and Related Diseases of the Oral Cavity. Polymers 2024, 16, 589. [Google Scholar] [CrossRef]
- Gilmore, B.F.; Hamill, T.M.; Jones, D.S.; Gorman, S.P. Validation of the CDC Biofilm Reactor as a Dynamic Model for Assessment of Encrustation Formation on Urological Device Materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 128–140. [Google Scholar] [CrossRef]
- Andersen, M.J.; Flores-Mireles, A.L. Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. Coatings 2020, 10, 23. [Google Scholar] [CrossRef]
- Smith, D.R.M.; Pouwels, K.B.; Hopkins, S.; Naylor, N.R.; Smieszek, T.; Robotham, J.V. Epidemiology and health-economic burden of urinary-catheter-associated infection in English NHS hospitals: A probabilistic modelling study. J. Hosp. Infect. 2019, 103, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Shuman, E.K.; Chenoweth, C.E. Urinary Catheter-Associated Infections. Infect. Dis. Clin. N. Am. 2018, 32, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Chew, B.H.; Lange, D. Ureteral stent symptoms and associated infections: A biomaterials perspective. Nat. Rev. Urol. 2009, 6, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Ilie, V.G.; Ilie, V.I. Ureteric Stent Use—Part of the Solution and Part of the Problem. Curr. Urol. 2018, 11, 126–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Hu, W.; Li, S.; Li, Y.; Zhu, R. Antireflux Ureteral Stent Improves Stent-Related Symptoms and Quality of Life: A Prospective Randomized Controlled Trial. J. Endourol. 2023, 37, 761–767. [Google Scholar] [CrossRef]
- Grazia, A.D.; Somani, B.K.; Soria, F.; Carugo, D.; Mosayyebi, A. Latest advancements in ureteral stent technology. Transl. Androl. Urol. 2019, 8, S436–S441. [Google Scholar] [CrossRef]
- Mosayyebi, A.; Manes, C.; Carugo, D.; Somani, B.K. Advances in Ureteral Stent Design and Materials. Curr. Urol. Rep. 2018, 19, 35. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Krakos, M.; Wilczek, P.; Bociaga, D. A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 730–756. [Google Scholar] [CrossRef]
- Jin, L.; Yao, L.; Yuan, F.; Dai, G.C.; Xue, B.X. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 665–672. [Google Scholar] [CrossRef]
- Barros, A.A.; Duarte, A.R.C.; Pires, R.A.; Sampaio-Marques, B.; Ludovico, P.; Lima, E.; Mano, J.F.; Reis, R.L. Bioresorbable ureteral stents from natural origin polymers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.A.; Oliveira, C.; Lima, E.; Duarte, A.R.C.; Reis, R.L. Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Appl. Mater. Today 2016, 5, 9–18. [Google Scholar] [CrossRef]
- Zmejkoski, D.Z.; Markovic, Z.M.; Zdravkovic, N.M.; Trisic, D.D.; Budimir, M.D.; Kuzman, S.B.; Kozyrovska, N.O.; Orlovska, I.V.; Bugárová, N.; Petrovic, D.Z.; et al. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. RSC Adv. 2021, 11, 8559–8568. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Cho, Y.W.; Cho, Y.-H.; Choi, J.M.; Shin, H.J.; Bae, Y.H.; Chung, H.; Jeong, S.Y.; Kwon, I.C. Norfloxacin-releasing urethral catheter for long-term catheterization. J. Biomater. Sci. Polym. Ed. 2003, 14, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Park, J.H.; Kim, S.H.; Cho, Y.H.; Choi, J.M.; Shin, H.J.; Bae, Y.H.; Chung, H.; Jeong, S.Y.; Kwon, I.C. Gentamicin-releasing urethral catheter for short-term catheterization. J. Biomater. Sci. Polym. Ed. 2003, 14, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Lü, H.; Zheng, S.X.; Tian, G.H. Poly(hydroxyether sulfone) and its blends with poly(ethylene oxide): Miscibility, phase behavior and hydrogen bonding interactions. Polymer 2004, 45, 2897–2909. [Google Scholar] [CrossRef]
- Andrews, R.J.; Grulke, E.A. Glass Transition Temperatures of Polymers, 4th ed.; John Wiley and Sons: New York, NY, USA, 2004. [Google Scholar]
- Mothé, C.G.; Drumond, W.S.; Wang, S.H. Phase behavior of biodegradable amphiphilic poly(L,L-lactide)-b-poly(ethylene glycol)-b-poly(L,L-lactide). Thermochim. Acta 2006, 445, 61–66. [Google Scholar] [CrossRef]
- Kuo, S.W.; Huang, C.F.; Tung, P.H.; Huang, W.J.; Huang, J.M.; Chang, F.C. Synthesis, thermal properties, and specific interactions of high Tg increase in poly(2,6-dimethyl-1,4-phenylene oxide)-block-polystyrene copolymers. Polymer 2005, 46, 9348–9361. [Google Scholar] [CrossRef]
- Fuller, C.S.; MacRae, R.J.; Walther, M.; Cameron, R.E. Interactions in poly(ethylene oxide)-hydroxypropyl methylcellulose blends. Polymer 2001, 42, 9583–9592. [Google Scholar] [CrossRef]
- Rinaldi, A.; Matos, R.; Rubira, A.; Ferreira, O.; Girotto, E. Electrical, spectroscopic, and thermal properties of blends formed by PEDOT, PVC, and PEO. J. Appl. Polym. Sci. 2005, 96, 1710–1715. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Tsagkalias, I.; Softas, C.; Ioannidou, M.D.; Achilias, D.S. Synthesis and characterization of poly(2-hydroxyethyl methacrylate)/silver hydrogel nanocomposites prepared via in situ radical polymerization. Thermochim. Acta 2016, 643, 53–64. [Google Scholar] [CrossRef]
- Fekete, E.; Földes, E.; Pukánszky, M. Effect of molecular interactions on the miscibility and structure of polymer blends. Eur. Polym. J. 2005, 41, 727–736. [Google Scholar] [CrossRef]
- Marwat, Z.K.; Baloch, M.K. Solvent induced miscibility between polymers, and its influence on the morphology, and mechanical properties of their blends. Eur. Polym. J. 2015, 66, 520–527. [Google Scholar] [CrossRef]
- Buzarovska, A.; Grozdanov, A. Crystallization kinetics of poly(hydroxybutyrate-co-hydroxyvalerate) and poly(dicyclohexylitaconate) PHBV/PDCHI blends: Thermal properties and hydrolytic degradation. J. Mater. Sci. 2009, 44, 1844–1850. [Google Scholar] [CrossRef]
- Aquino, K.A.D.; da Silva, F.F.; Araújo, E.S. Investigation of Poly(vinyl chloride)/Polystyrene Mixture Miscibility: Comparison of Viscometry Criteria with Fourier Transform Infrared Spectroscopy and Refractive Index Measurements. J. Appl. Polym. Sci. 2011, 119, 2770–2777. [Google Scholar] [CrossRef]
- Qu, Z.; Xu, H.; Gu, H. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. ACS Appl. Mater. Interfaces 2015, 7, 14537–14551. [Google Scholar] [CrossRef]
- Hong, C.Y.; Li, X.; Pan, C.Y. Smart Core-Shell Nanostructure with a Mesoporous Core and a Stimuli-Responsive Nanoshell Synthesized Via Surface Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Phys. Chem. C 2008, 112, 15320. [Google Scholar] [CrossRef]
- Sun, J.T.; Yu, Z.Q.; Hong, C.Y.; Pan, C.Y. Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release, Macromol. Rapid Commun. 2012, 33, 811. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Oigiviy, L.Y.; Zhu, F.; Yang, J.; Zhu, Y. Complexation of poly(acrylic acid) and poly(ethylene oxide) investigated by enhanced Rayleigh scattering method. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1847–1852. [Google Scholar] [CrossRef]
- Monir, T.S.B.; Afroz, S.; Khan, R.A.; Miah, M.Y.; Takafuji, M.; Alam, M.A. pH-Sensitive Hydrogel from Polyethylene Oxide and Acrylic acid by Gamma Radiation. J. Compos. Sci. 2019, 3, 58. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Szalla, A. Photochemical transformation in poly(acrylic acid)/poly(ethylene oxide) complexes. J. Photochem. Photobiol. A Chem. 2006, 180, 46–53. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, F.; Lubach, J.; Koleng, J.; Watson, N.A. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants. Eur. J. Pharm. Biopharm. 2016, 105, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.F.; Lv, R.H.; Tong, Z.Z.; Na, B.; Fu, K.; Liu, H.S. In situ hydrogen-bonding complex mediated shape memory behavior of PAA/PEO blends. Polymer 2019, 183, 121878. [Google Scholar] [CrossRef]
- Rocco, A.M.; Bielschowsky, C.E.; Pereira, R.P. Blends of poly(ethylene oxide) and poly(4-vinylphenol-co-2-hydroxyethyl methacrylate):: Thermal analysis, morphological behaviour and specific interactions. Polymer 2003, 44, 361–368. [Google Scholar] [CrossRef]
- Akiba, I.; Ohba, Y.; Akiyama, S. Phase structure in blends of poly(ethylene glycol) and poly(styrene-co-methacrylic acid). Macromolecules 1999, 32, 1175–1179. [Google Scholar] [CrossRef]
- Akiyama, S.; Ishikawa, K.; Kawahara, S.; Akiba, I. Interactions in blends of bisphenol-A polycarbonate and poly(styrene-co-methacrylic acid). Polymer 2001, 42, 6657–6660. [Google Scholar] [CrossRef]
- Lee, J.; Painter, P.; Coleman, M. Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups. Macromolecules 1988, 21, 346–354. [Google Scholar] [CrossRef]
- Abu-Diak, O.A.; Jones, D.S.; Andrews, G.P. Understanding the performance of melt-extruded poly(ethylene oxide)-bicalutamide solid dispersions: Characterisation of microstructural properties using thermal, spectroscopic and drug release methods. J. Pharm. Sci. 2012, 101, 200–213. [Google Scholar] [CrossRef]
- Alexandiridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and interfaces: Thermodynamics, structure, dynamics and modelling. Colloids Surf. A 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Hecht, E.; Hoffmann, H. Kinetic and calorimetric investigations on micelle formation of block co-polymers of the Poloxamer type. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 181–197. [Google Scholar] [CrossRef]
Pluronic Grade | Mean (±sd) Glass Transition, Melting and Crystallisation Temperatures | Mean (±sd) Enthalpies of Melting and Crystallinity | Degree of Crystallinity | |||
---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tc (°C) | ΔHm,PEO (J g−1) | ΔHc,PEO (J g−1) | χc(PEO) (%) | |
P F127 | −65.8 ± 0.4 | 56.5 ± 0.3 | Not Measured | 116.9 ± 1.4 | Not Measured | 62.2 ± 0.8 |
P P123 | −68.8 ± 0.4 | 36.8 ± 0.3 | Not Measured | 42.8 ± 0.8 | Not Measured | 22.7 ± 0.4 |
P L121 | −71.4 ± 0.8 | Not Measured | −56 ± 0.8 | Not Measured | 6.6 ± 0.4 | Not Measured |
Pluronic Type | Pluronic Conc. (% w/w) | Mean ± sd Glass Transition Temperature(°C) | Melt Temperature (°C, Tm) | ΔHm PEO (J g−1) | ||
---|---|---|---|---|---|---|
Tg 1 | Tg 2 | Tg 2* | ||||
None | 0, p(HEMA) | Not present | 114.2± 0.6 | 126.6 ± 0.5 | Not present | Not present |
F127 | 10 | Not present | 111.3 ± 0.5 | 126.7 ± 1.5 | 43.2 ± 1.3 | 66.0 ± 3.1 |
20 | −67.0 ± 0.5 | 112.0 ± 1.1 | 124.0 ± 1.9 | 47.5 ± 1.0 | 85.7 ± 3.4 | |
30 | −67.0 ± 0.5 | 113.6 ± 0.6 | 128.1 ± 1.7 | 50.3 ± 0.9 | 99.6 ± 3.3 | |
40 | −66.9 ± 0.5 | 113.9 ± 0.4 | 128.9 ± 1.1 | 53.4 ± 0.6 | 108.9 ± 3.2 | |
100 | −65.8 ± 0.4 | Not present | Not present | 56.5 ± 0.3 | 116.9 ± 1.4 | |
P123 | 10 | −67.1 ± 0.4 | 113.8 ± 0.6 | 125.8 ± 0.5 | 24.8 ± 0.7 | 2.1 ± 0.6 |
20 | −67.1 ± 0.3 | 112.7 ± 0.5 | 124.8 ± 1.4 | 28.1 ± 0.3 | 4.8 ± 0.5 | |
30 | −67.4 ± 0.2 | 112.0 ± 0.7 | 126.8 ± 0.9 | 31.7 ± 0.9 | 8.8 ± 0.8 | |
40 | −67.6 ± 0.3 | 112.0 ± 0.4 | 127.5 ± 0.5 | 33.9 ± 0.8 | 13.1 ± 0.7 | |
100 | −68.8 ± 0.4 | Not present | Not present | 36.8 ± 0.3 | 42.8 ± 0.8 | |
L121 | 10 | −67.9 ± 0.8 | 114.2 ± 0.6 | 126.6 ± 0.5 | Not present | Not present |
20 | −67.9 ± 0.4 | 113.4 ± 0.5 | 124.8 ± 2.4 | −41.4 ± 0.4 | 0.2 ± 0.0 | |
30 | −69.0 ± 1.4 | 113.7 ± 0.8 | 121.5 ± 1.6 | −42.8 ± 0.7 | 1.0 ± 0.2 | |
40 | −69.0 ± 1.8 | 113.6 ± 0.9 | 125.8 ± 1.9 | −48.5 ± 0.9 | 2.4 ± 0.4 | |
100 | −71.3 ± 0.8 | 113.0 ± 0.9 | 127.3 ± 1.6 | −51.4 ± 0.6 | 4.5 ± 0.4 |
Pluronic Type | Pluronic Conc. (% w/w) | Mean ± sd Glass Transition (°C, Tg) | Melt Temperature (°C, Tm) | ΔHm PEO (J g−1) | ||
---|---|---|---|---|---|---|
Tg 1 | Tg 2 | Tg 2* | ||||
None | 0, p(MAA) | Not Present | 205.5 ± 0.8 | 211.5 ± 0.4 | Not Present | Not Present |
F127 | 10 | Not Present | 203.2 ± 1.0 | 206.8 ± 0.6 | Not Present | Not Present |
20 | 194.8 ± 2.2 | 195.5 ± 0.8 | ||||
30 | 171.8 ± 2.0 | 185.7 ± 0.8 | ||||
40 | 158.5 ± 2.6 | 173.1 ± 0.7 | ||||
50 | 142.3 ± 2.5 | 168.7 ± 1.5 | ||||
100 | −65.8 ± 0.4 | Not Present | Not Present | 56.5 ± 0.3 | 116.9 ± 1.4 | |
P123 | 10 | Not Present | 208.3 ± 1.7 | 213.7 ± 0.2 | Not Present | Not Present |
20 | 207.0 ± 0.3 | 205.3 ± 1.0 | ||||
30 | 198.5 ± 0.7 | 199.0 ± 0.5 | ||||
40 | 193.5 ± 1.0 | 197.8 ± 0.2 | ||||
50 | 194.1 ± 1.2 | 197.3 ± 1.1 | ||||
100 | −68.8 ± 0.4 | Not Present | Not Present | 36.8 ± 0.3 | 42.8 ± 0.8 | |
L121 | 10 | Not Present | 210.0 ± 2.8 | 213.3 ± 0.5 | Not Present | Not Present |
20 | 207.8 ± 1.0 | 207.3 ± 0.6 | ||||
30 | 198.4 ± 1.5 | 205.9 ± 0.4 | ||||
40 | 191.9 ± 1.4 | 202.2 ± 0.2 | ||||
50 | −68.4 ± 0.6 | 189.0 ± 1.5 | 202.0 ± 0.2 | |||
100 | −71.3 ± 0.8 | Not Present | Not Present | 4.5 ± 0.4 |
Concentration of Pluronic (% w/v) | Mean (±sd) Critical Micellization Temperature of Pluronic Solutions | ||
---|---|---|---|
Pluronic F127 | Pluronic P123 | Pluronic L121 | |
1 | not detected | not detected | 16.5 ± 0.1 |
5 | 25.1 ± 0.1 | 19.9 ± 0.1 | 14.4 ± 0.1 |
10 | 22.6 ± 0.1 | 17.4 ± 0.1 | 13.5 ± 0.1 |
10 (Tris buffer) | 18.3 ± 0.1 | 14.1 ± 0.1 | 11.7 ± 0.1 |
20 | 17.1 ± 0.2 | 14.3 ± 0.1 | not tested |
Network Composition | Pluronic Grade | Mean (±sd) Critical Micelle Temperature (°C) in IHNs Containing Different Concentrations of Pluronic (% w/w) | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | ||
p(HEMA) | F127 | Not detected | Not detected | Not detected | Not detected | Not detected | Not detected |
P123 | Not detected | 13.3 ± 1.4 | 12.8 ± 1.3 | 11.7 ± 1.4 | 13.8 ± 1.5 | Not determined | |
L121 | Not detected | 11.4 ± 1.2 | 11.3 ± 1.5 | 10.5 ± 1.8 | 9.8 ± 2.1 | Not determined | |
p(MAA) | F127 | Not detected | Not detected | 18.0 ± 1.2 | 18.5 ± 1.1 | 18.9 ± 1.3 | 19.4 ± 0.9 |
P123 | Not detected | 15.2 ± 1.0 | 15.8 ± 1.0 | 15.5 ± 0.7 | 15.9 ± 0.8 | 16.0 ± 1.1 | |
L121 | Not detected | 12.0 ± 1.1 | 11.8 ± 1.0 | 12.4 ± 0.8 | 12.0 ±0.4 | 11.9 ± 1.0 |
Time (Days) | Mean (±s.d.) % Loss of Pluronic Block Copolymers: | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pluronic F127 (% w/w Initial Loading) | Pluronic P123 (% w/w Initial Loading) | Pluronic L121 (% w/w Initial Loading) | ||||||||||
10 | 20 | 30 | 40 | 10 | 20 | 30 | 40 | 10 | 20 | 30 | 40 | |
3 | 53.4 ± 4.1 | 73.6 ± 4.9 | 76.1 ± 5.8 | 78.1 ± 5.4 | 0.1 ± 0.0 | 0.4 ± 0.0 | 0.8 ± 0.1 | 2.2 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.0 | 1.9 ± 0.2 | 2.3 ± 0.1 |
7 | 87.2 ± 4.0 | 94.2 ± 7.2 | 95.2 ± 6.1 | 96.4 ± 4.9 | 0.1 ± 0.0 | 0.5 ± 0.0 | 2.0 ± 0.3 | 3.7 ± 0.2 | 0.1 ± 0.0 | 1.2 ± 0.1 | 2.2 ± 0.1 | 2.7 ± 0.1 |
14 | 95.8 ± 5.0 | 95.0 ± 6.1 | 94.7 ± 5.4 | 95.8 ± 6.8 | 0.1 ± 0.0 | 1.0 ± 0.0 | 2.6 ± 0.2 | 5.5 ± 0.4 | 0.1 ± 0.0 | 1.3 ± 0.1 | 2.2 ± 0.1 | 3.0 ± 0.2 |
21 | NA | NA | NA | NA | 0.2 ± 0.0 | 1.5 ± 0.2 | 3.4 ± 0.3 | 6.4 ± 0.4 | 0.1 ± 0.0 | 1.3 ± 0.1 | 2.3 ± 0.1 | 3.1 ± 0.3 |
28 | NA | NA | NA | NA | 0.3 ± 0.0 | 2.2 ± 0.2 | 4.0 ± 0.4 | 7.5 ± 0.3 | 0.1 ± 0.0 | 1.4 ± 0.1 | 2.4 ± 0.1 | 3.1 ± 0.2 |
Time (Days) | Mean (±s.d.) % Loss of Pluronic Block Copolymers: | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pluronic F127 (% w/w Initial Loading) | Pluronic P123 (% w/w Initial Loading) | Pluronic L121 (% w/w Initial Loading) | |||||||||||||
10 | 20 | 30 | 40 | 50 | 10 | 20 | 30 | 40 | 50 | 10 | 20 | 30 | 40 | 50 | |
2 | 1.5 ± 0.1 | 2.4 ± 0.1 | 3.1 ± 0.2 | 9.1 ± 0.4 | 17.4 ± 2.4 | 1.2 ± 0.1 | 2.0 ± 0.1 | 2.6 ± 0.2 | 4.5 ± 0.3 | 9.0 ± 0.5 | ND | ND | 0.9 ± 0.1 | 1.3 ± 0.1 | 2.4 ± 0.1 |
4 | 1.8 ± 0.1 | 3.0 ± 0.2 | 3.3 ± 0.1 | 10.9 ± 6.1 | 24.5 ± 1.8 | 1.4 ± 0.1 | 2.6 ± 0.2 | 3.0 ± 0.1 | 5.4 ± 0.2 | 11.9 ± 1.1 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.1 ± 0.1 | 1.5 ± 0.1 | 3.2 ± 0.2 |
7 | 2.0 ± 0.1 | 3.1 ± 0.1 | 3.5 ± 0.2 | 13.1 ± 6.2 | 25.2 ± 1.8 | 1.6 ± 0.2 | 2.6 ± 0.2 | 2.9 ± 0.2 | 6.2 ± 0.3 | 14.0 ± 1.4 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.4 ± 0.1 | 1.5 ± 0.2 | 3.7 ± 0.2 |
14 | 2.0 ± 0.1 | 3.2 ± 0.1 | 3.5 ± 0.2 | 13.1 ± 2.4 | 25.3 ± 2.0 | 1.7 ± 0.2 | 2.6 ± 0.2 | 3.0 ± 0.2 | 6.2 ± 0.4 | 14.4 ± 1.3 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.5 ± 0.1 | 2.0 ± 0.3 | 3.7 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.S.; Westwood, M.; Li, S.; Andrews, G.P. Spectroscopic and Thermal Characterisation of Interpenetrating Hydrogel Networks (IHNs) Based on Polymethacrylates and Pluronics, and Their Physicochemical Stability under Aqueous Conditions. Polymers 2024, 16, 2796. https://doi.org/10.3390/polym16192796
Jones DS, Westwood M, Li S, Andrews GP. Spectroscopic and Thermal Characterisation of Interpenetrating Hydrogel Networks (IHNs) Based on Polymethacrylates and Pluronics, and Their Physicochemical Stability under Aqueous Conditions. Polymers. 2024; 16(19):2796. https://doi.org/10.3390/polym16192796
Chicago/Turabian StyleJones, David S., Marion Westwood, Shu Li, and Gavin P. Andrews. 2024. "Spectroscopic and Thermal Characterisation of Interpenetrating Hydrogel Networks (IHNs) Based on Polymethacrylates and Pluronics, and Their Physicochemical Stability under Aqueous Conditions" Polymers 16, no. 19: 2796. https://doi.org/10.3390/polym16192796
APA StyleJones, D. S., Westwood, M., Li, S., & Andrews, G. P. (2024). Spectroscopic and Thermal Characterisation of Interpenetrating Hydrogel Networks (IHNs) Based on Polymethacrylates and Pluronics, and Their Physicochemical Stability under Aqueous Conditions. Polymers, 16(19), 2796. https://doi.org/10.3390/polym16192796