Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness
Abstract
:1. Introduction
2. Pullulan: A Polymer Powerhouse
2.1. Overview of Pullulan’s Properties and Characteristics
2.2. Biocompatibility and Safety of Pullulan in Medical Applications
2.3. Previous Applications of Pullulan in Drug Delivery Systems
3. Nanoparticle Drug Delivery Systems
3.1. The Advantages of Nanoparticles for Drug Delivery
3.2. Comparison between Conventionall Drug Delivery Methods and Nanoparticle
3.3. Role of Pullulan in Enhancing the Efficacy of Nanoparticle-Based Drug Delivery
4. Recent Developments in Pullulan-Polymer Nanoparticles
Nanoparticle | Preparation Method |
Primary Aims | Particle Size | Zeta Potential/PDI | Result | Ref. |
---|---|---|---|---|---|---|
Polymeric | Bottom-up method | Develop a hybrid nanoparticle for efficient boron delivery in cancer therapy | - | - |
| [94] |
Polymeric | Dialysis method | Create biodegradable nano-formulation for enhanced delivery and efficacy of ferulic acid | 425 ± 5.2 nm | - |
| [96] |
Polymeric | Bottom-up method | Design a smart microneedle patch for differential drug release to aid wound healing | 258.0 ± 10.86 nm | 45.1 ± 3.9 mV/0.19 ± 0.06 |
| [97] |
Polymeric | Bottom-up method | Develop redox-sensitive prodrug nanoparticles for targeted delivery of paclitaxel in cancer therapy | 134–163 nm | - |
| [98] |
Polymeric | Bottom-up method | Prepare pullulan nanoparticles loaded with methotrexate and camptothecin for synergistic tumor-targeted therapy | 185.7 ± 16.7 nm | - |
| [99] |
Polymeric-Folate Conjugated | Dialysis method without a surfactant | Construct a non-spherical drug delivery system based on folate-conjugated pullulan acetate for placental targeting | - | - |
| [100] |
Polymeric-Albumin | Self-assembly | Fabricate EGCG-loaded nanoparticles for enhanced stability and antioxidant activity | - | - |
| [101] |
Polymeric-Trastuzumab Functionalized | Bottom-up method | Develop trastuzumab functionalized nanoparticles for active targeting of HER-2 positive breast cancer cells | 66.7 ± 2.0 nm | PDI: 0.218 ± 0.012 |
| [86] |
Polymeric-Themoresponsive | Bottom-up method | Synthesize thermoresponsive hydrogel loaded with pullulan nanoparticles for sustained drug release | - | - |
| [102] |
Polymeric-Complex Inclusion | The emulsion solvent evaporation method | Design a liver-specific drug delivery system using glycyrrhetinic acid-grafted pullulan nanoparticles | 200 nm | - |
| [103] |
Polymeric-Amino Acid | Dialysis method | Develop drug-loaded nanoparticles based on cholesterol-modified carboxylated pullulan for controlled drug release | 118.7 nm | - |
| [104] |
Polymeric-Cholesterol | Dialysis method | Design cholesterol-modified carboxylated pullulan nanoparticles for controlled release and cytotoxicity evaluation | 178.0 nm | - |
| [105] |
Metal Nanoparticle | Bottom-up method | Synthesize stable gold nanoparticles embedded in a tablet for glucose monitoring | - | - |
| [95] |
Metal Nanoparticle | Green synthesis | Synthesize silver nanoparticles using green method and evaluate their antimicrobial and catalytic properties | 20 nm | - |
| [33] |
Metal Nanoparticle | Green synthesis | Synthesize pullulan decorated with Ag and Au nanoparticles and evaluate their antimicrobial and QS inhibition effects | - | - |
| [106] |
4.1. Characterization of Physicochemical Properties
4.1.1. Particle Size and Zeta Potential
4.1.2. Morphology Study
4.1.3. FTIR Analysis
4.1.4. X-ray Diffraction Analysis
4.1.5. DSC Analysis
4.2. Stability, Solubility, and Drug Release Behavior
4.2.1. Stability Study
4.2.2. Solubility Study and Drug Release
4.3. Drug Effectiveness
5. Challenges and Future Perspectives
5.1. Addressing Current Limitations and Challenges in Pullulan-Based Drug Delivery
5.2. Proposing Potential Solutions and Avenues for Future Research
6. Discussion and Author Perspective
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, S.; Kirar, M.; Bindeliya, M.; Sen, L.; Soni, M.; Shan, M.; Purohit, A.; Jain, P.K. Novel Drug Delivery Systems: An Overview. Asian J. Dent. Health Sci. 2022, 2, 33–39. [Google Scholar] [CrossRef]
- Park, H.; Otte, A.; Park, K. Evolution of Drug Delivery Systems: From 1950 to 2020 and Beyond. J. Control. Release 2022, 342, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Controlled Drug Delivery Systems: Past Forward and Future Back. J. Control. Release 2014, 190, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.; Fatma, S.; Sharma, D.; Mishra, J.N.; Kushwaha, A. Ocular Drug Delivery Systems: An Overview. IJRDO-J. Appl. Sci. 2022, 8, 26–30. [Google Scholar] [CrossRef]
- Singh, B.; Kapil, R.; Nandi, M.; Ahuja, N. Developing Oral Drug Delivery Systems Using Formulation by Design: Vital Precepts, Retrospect and Prospects. Expert Opin. Drug Deliv. 2011, 8, 1341–1360. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Jamshaid, M.; Zaman, M.; Mirza, A.Z. Bilayer Tablets: A Developing Novel Drug Delivery System. J. Drug Deliv. Sci. Technol. 2020, 60, 102079. [Google Scholar] [CrossRef]
- Pawar, R.; Jaimini, M.; Chauhan, B.S.; Sharma, S.K. Compression Coated Tablets as Drug Delivery System (Tablet in Tablet): A Review. Int. J. Pharm. Res. Dev. 2014, 6, 21–33. [Google Scholar]
- Ishino, R.; Yoshino, H.; Hirakawa, Y.; Noda, K. Design and Preparation of Pulsatile Release Tablet as a New Oral Drug Delivery System. Chem. Pharm. Bull. 1992, 40, 3036–3041. [Google Scholar] [CrossRef]
- Needham, D.; Dewhirst, M.W. The Development and Testing of a New Temperature-Sensitive Drug Delivery System for the Treatment of Solid Tumors. Adv. Drug Deliv. Rev. 2001, 53, 285–305. [Google Scholar] [CrossRef]
- Kayser, O.; Lemke, A.; Hernandez-Trejo, N. The Impact of Nanobiotechnology on the Development of New Drug Delivery Systems. Curr. Pharm. Biotechnol. 2016, 6, 3–5. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Saleh, A.M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm. J. 2018, 26, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Sun, C.; Jiang, J.; Wang, A.; Wang, C.; Shen, Y.; Huang, B.; An, C.; Cui, B.; Zhao, X.; et al. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. J. Agric. Food Chem. 2021, 69, 12579–12597. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.G.H. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances. Crit. Rev. Ther. Drug Carr. Syst. 2016, 33, 107–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, S.; Choi, B.H.; Park, M.T.; Lee, J.; Jeong, S.Y.; Choi, E.K.; Lim, B.U.; Kim, C.; Park, H.J. Hyperthermia Improves Therapeutic Efficacy of Doxorubicin Carried by Mesoporous Silica Nanocontainers in Human Lung Cancer Cells. Int. J. Hyperth. 2011, 27, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Zhou, H.Y. Molecularly Targeted Gemcitabine-Loaded Nanoparticulate System towards the Treatment of EGFR Overexpressing Lung Cancer. Biomed. Pharmacother. 2015, 70, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Puluhulawa, L.E.; Joni, I.M.; Elamin, K.M.; Mohammed, A.F.A.; Muchtaridi, M.; Wathoni, N. Chitosan–Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers 2022, 14, 3410. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.M.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.; Bucatariu, S.; Sacarescu, L.; Daraba, O.M.; Anghelache, M.; Fundueanu, G. Pullulan Derivative with Cationic and Hydrophobic Moieties as an Appropriate Macromolecule in the Synthesis of Nanoparticles for Drug Delivery. Int. J. Biol. Macromol. 2020, 164, 4487–4498. [Google Scholar] [CrossRef]
- Feng, X.; Wang, W.; Chu, Y.; Gao, C.; Liu, Q.; Tang, X. Effect of Cinnamon Essential Oil Nanoemulsion Emulsified by OSA Modified Starch on the Structure and Properties of Pullulan Based Films. LWT 2020, 134, 110123. [Google Scholar] [CrossRef]
- Agrawal, S.; Budhwani, D.; Gurjar, P.; Telange, D.; Lambole, V. Pullulan Based Derivatives: Synthesis, Enhanced Physicochemical Properties, and Applications. Drug Deliv. 2022, 29, 3328–3339. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.A.; Rather, L.J.; Li, Q. A Review on Anticancer Applications of Pullulan and Pullulan Derivative Nanoparticles. Carbohydr. Polym. Technol. Appl. 2021, 2, 100115. [Google Scholar] [CrossRef]
- Tao, X.; Jin, S.; Wu, D.; Ling, K.; Yuan, L.; Lin, P.; Xie, Y.; Yang, X. Effects of Particle Hydrophobicity, Surface Charge, Media PH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles. Nanomaterials 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chaurasiya, B.; Wu, D.; Wang, H.; Du, Y.; Tu, J.; Webster, T.J.; Sun, C. Versatile Redox-Sensitive Pullulan Nanoparticles for Enhanced Liver Targeting and Efficient Cancer Therapy. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Dionísio, M.; Cordeiro, C.; Remuñán-López, C.; Seijo, B.; Da Costa, A.M.R.; Grenha, A. Pullulan-Based Nanoparticles as Carriers for Transmucosal Protein Delivery. Eur. J. Pharm. Sci. 2013, 50, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: Microbial Sources, Production and Applications. Carbohydr. Polym. 2008, 73, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, J.H.; Zhu, I.H.; Zhan, X.B.; Lee, J.W.; Shin, D.H.; Kim, S.K. Optimization of Conditions for the Production of Pullulan and High Molecular Weight Pullulan by Aureobasidium Pullulans. Biotechnol. Lett. 2001, 23, 817–820. [Google Scholar] [CrossRef]
- Muthusamy, S.; Anandharaj, S.J.; Kumar, P.S.; Meganathan, Y.; Vo, D.V.N.; Vaidyanathan, V.K.; Muthusamy, S. Microbial Pullulan for Food, Biomedicine, Cosmetic, and Water Treatment: A Review. Environ. Chem. Lett. 2022, 20, 3199–3234. [Google Scholar] [CrossRef]
- Wypij, M.; Rai, M.; Zemljič, L.F.; Bračič, M.; Hribernik, S.; Golińska, P. Pullulan-Based Films Impregnated with Silver Nanoparticles from the Fusarium Culmorum Strain JTW1 for Potential Applications in the Food Industry and Medicine. Front. Bioeng. Biotechnol. 2023, 11, 1241739. [Google Scholar] [CrossRef]
- Hsiung, E.; Celebioglu, A.; Chowdhury, R.; Kilic, M.E.; Durgun, E.; Altier, C.; Uyar, T. Antibacterial Nanofibers of Pullulan/Tetracycline-Cyclodextrin Inclusion Complexes for Fast-Disintegrating Oral Drug Delivery. J. Colloid Interface Sci. 2022, 610, 321–333. [Google Scholar] [CrossRef]
- Uenaka, A.; Wada, H.; Isobe, M.; Saika, T.; Tsuji, K.; Sato, E.; Sato, S.; Noguchi, Y.; Kawabata, R.; Yasuda, T.; et al. T Cell Immunomonitoring and Tumor Responses in Patients Immunized with a Complex of Cholesterol-Bearing Hydrophobized Pullulan (CHP) and NY-ESO-1 Protein. Cancer Immun. 2007, 7, 9. [Google Scholar] [PubMed]
- Lee, I.W.; Li, J.; Chen, X.; Park, H.J. Fabrication of Electrospun Antioxidant Nanofibers by Rutin-Pluronic Solid Dispersions for Enhanced Solubility. J. Appl. Polym. Sci. 2017, 134, 44859. [Google Scholar] [CrossRef]
- Constantin, M.; Spiridon, M.; Ichim, D.L.; Daraba, O.M.; Suflet, D.M.; Ignat, M.; Fundueanu, G. Synthesis, Biological and Catalytic Activity of Silver Nanoparticles Generated and Covered by Oxidized Pullulan. Mater. Chem. Phys. 2023, 295, 127141. [Google Scholar] [CrossRef]
- Laksee, S.; Puthong, S.; Kongkavitoon, P.; Palaga, T.; Muangsin, N. Facile and Green Synthesis of Pullulan Derivative-Stabilized Au Nanoparticles as Drug Carriers for Enhancing Anticancer Activity. Carbohydr. Polym. 2018, 198, 495–508. [Google Scholar] [CrossRef]
- Nonsuwan, P.; Puthong, S.; Palaga, T.; Muangsin, N. Novel Organic/Inorganic Hybrid Flower-like Structure of Selenium Nanoparticles Stabilized by Pullulan Derivatives. Carbohydr. Polym. 2018, 184, 9–19. [Google Scholar] [CrossRef]
- Yuan, H.; Zhong, W.; Wang, R.; Zhou, P.; Nie, Y.; Hu, W.; Tao, X.; Yang, P. Preparation of Cholesteryl-Modified Aminated Pullulan Nanoparticles to Evaluate Nanoparticle of Hydrophobic Degree on Drug Release and Cytotoxicity. J. Nanomater. 2020, 2020, 7171209. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Zhao, S.; Zhou, Q.; Xin, X.; Chen, L. Statistical Optimization of Medium for Pullulan Production by Aureobasidium Pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates. Molecules 2018, 23, 1334. [Google Scholar] [CrossRef]
- Zeng, N.; Zhang, N.; Wang, D.; Long, J.; Wang, Y.; Zhang, Y.; Pu, F.; Li, Z.; Baloch, F.B.; Li, B. Regulation of Cell Differentiation to Promote Pullulan Synthesis in Aureobasidium Pullulans NG. Appl. Microbiol. Biotechnol. 2023, 107, 6761–6773. [Google Scholar] [CrossRef]
- Kicková, E.; Sadeghi, A.; Puranen, J.; Tavakoli, S.; Sen, M.; Ranta, V.P.; Arango-Gonzalez, B.; Bolz, S.; Ueffing, M.; Salmaso, S.; et al. Pharmacokinetics of Pullulan–Dexamethasone Conjugates in Retinal Drug Delivery. Pharmaceutics 2022, 14, 12. [Google Scholar] [CrossRef]
- Ponrasu, T.; Chen, B.H.; Chou, T.H.; Wu, J.J.; Cheng, Y.S. Fast Dissolving Electrospun Nanofibers Fabricated from Jelly Fig Polysaccharide/Pullulan for Drug Delivery Applications. Polymers 2021, 13, 241. [Google Scholar] [CrossRef]
- Chen, K.; Sivaraj, D.; Davitt, M.F.; Leeolou, M.C.; Henn, D.; Steele, S.R.; Huskins, S.L.; Trotsyuk, A.A.; Kussie, H.C.; Greco, A.H.; et al. Pullulan-Collagen Hydrogel Wound Dressing Promotes Dermal Remodelling and Wound Healing Compared to Commercially Available Collagen Dressings. Wound Repair Regen. 2022, 30, 397–408. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Recent Insights on Applications of Pullulan in Tissue Engineering. Carbohydr. Polym. 2016, 153, 455–462. [Google Scholar] [CrossRef]
- Amrita; Arora, A.; Sharma, P.; Katti, D.S. Pullulan-Based Composite Scaffolds for Bone Tissue Engineering: Improved Osteoconductivity by Pore Wall Mineralization. Carbohydr. Polym. 2015, 123, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Santhosh Kumar, B.; Ganesh Kumar, M.; Suguna, L.; Sastry, T.P.; Mandal, A.B. Pullulan Acetate Nanoparticles Based Delivery System for Hydrophobic Drug. Int. J. Pharma Bio Sci. 2012, 3, P24–P32. [Google Scholar]
- Grigoras, A.G. Drug Delivery Systems Using Pullulan, a Biocompatible Polysaccharide Produced by Fungal Fermentation of Starch. Environ. Chem. Lett. 2019, 17, 1209–1223. [Google Scholar] [CrossRef]
- Viveka, R.; Nakkeeran, E. Development and Characterization of a Novel Biodegradable Laboratory-Made Pullulan Blended Films. J. Environ. Biol. 2022, 43, 755–763. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Pullulan: A Novel Molecule for Biomedical Applications. Carbohydr. Polym. 2017, 171, 102–121. [Google Scholar] [CrossRef]
- Kawano, K.; Mizuno, T. A Pilot Study of the Effect of Pullulan-Conjugated Der f 2 Allergen-Specific Immunotherapy on Canine Atopic Dermatitis. Vet. Dermatol. 2017, 28, 583-e141. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, D.; Sugawara, T.; Hashida, K.; Yasuhara, Y.; Fujinami, K.; Lund, K.; Ohashi-Doi, K. Reduced Anaphylactic Potential of Denatured Pullulan-Conjugated Cry j 1. Int. Immunopharmacol. 2021, 99, 108026. [Google Scholar] [CrossRef]
- Shaat, F.; Pavaloiu, R.-D.; Hlevca, C. Current Status of the Applications of Pullulan and Its Derivatives in Biomedical Field. Sci. Bull. Ser. F Biotechnol. 2022, 26, 125–132. [Google Scholar]
- Coltelli, M.-B.; Danti, S.; De Clerck, K.; Lazzeri, A.; Morganti, P. Pullulan for Advanced Sustainable Body-and Skin-Contact Applications. J. Funct. Biomater. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, H.; Jia, Y.; Liu, X.; Hhan, Z.; Wang, A.; Liu, Q.; Li, X.; Feng, X. Effect of Inhibitors of Endocytosis and NF-KB Signal Pathway on Folate-Conjugated Nanoparticle Endocytosis by Rat Kupffer Cells. Int. J. Nanomed. 2017, 12, 6937–6947. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, Y.; Wen, S.; Wen, Y.; Wang, R.; Zhang, Q.; Qin, G.; Yi, H.; Wu, M.; Lu, L.; et al. Synergistically Enhanced Inhibitory Effects of Pullulan Nanoparticle-Mediated Co-Delivery of Lovastatin and Doxorubicin to Triple-Negative Breast Cancer Cells. Nanoscale Res. Lett. 2019, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, F.; Yi, J.; Gu, C.; Fan, L.; Qiao, Y.; Tao, Y.; Cheng, C.; Wu, H. Folate-Decorated Maleilated Pullulan-Doxorubicin Conjugate for Active Tumor-Targeted Drug Delivery. Eur. J. Pharm. Sci. 2011, 42, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, R.; Naik, S.; Shreya, A.B.; Kandpal, N.; Pandey, A.; Kalthur, G.; Mutalik, S. Pullulan Based Stimuli Responsive and Sub Cellular Targeted Nanoplatforms for Biomedical Application: Synthesis, Nanoformulations and Toxicological Perspective. Int. J. Biol. Macromol. 2020, 161, 1189–1205. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Zhong, C.; Jie, P.; Hou, Y. The Effect of Nanoparticle Size and Nanoparticle Aggregation on the Flow Characteristics of Nanofluids by Molecular Dynamics Simulation. Adv. Mech. Eng. 2019, 11, 1687814019889486. [Google Scholar] [CrossRef]
- Al-jubori, A.A.; Sulaiman, G.M.; Tawfeeq, A.T.; Mohammed, H.A.; Khan, R.A.; Mohammed, S.A.A. Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment. Pharmaceutics 2021, 13, 1098. [Google Scholar] [CrossRef] [PubMed]
- Shilo, M.; Sharon, A.; Baranes, K.; Motiei, M.; Lellouche, J.P.M.; Popovtzer, R. The Effect of Nanoparticle Size on the Probability to Cross the Blood-Brain Barrier: An in-Vitro Endothelial Cell Model. J. Nanobiotechnol. 2015, 13, 19. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Hassan, M.; Kennedy, J.F. Pullulan in Biomedical Research and Development-A Review. Int. J. Biol. Macromol. 2021, 166, 694–706. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles from Liposomes to MRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Forest, C.R.; Silva, C.A.C.; Thordarson, P. Dual-Peptide Functionalized Nanoparticles for Therapeutic Use. Pept. Sci. 2021, 113, e24205. [Google Scholar] [CrossRef]
- Titus, D.; James Jebaseelan Samuel, E.; Roopan, S.M. Nanoparticle Characterization Techniques. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kano, S.; Tada, T.; Majima, Y. Nanoparticle Characterization Based on STM and STS. Chem. Soc. Rev. 2015, 44, 970–987. [Google Scholar] [CrossRef] [PubMed]
- Shabani Ravari, N.; Goodarzi, N.; Alvandifar, F.; Amini, M.; Souri, E.; Khoshayand, M.R.; Hadavand Mirzaie, Z.; Atyabi, F.; Dinarvand, R. Fabrication and Biological Evaluation of Chitosan Coated Hyaluronic Acid-Docetaxel Conjugate Nanoparticles in CD44+ Cancer Cells. DARU J. Pharm. Sci. 2016, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Åberg, C. Kinetics of Nanoparticle Uptake into and Distribution in Human Cells. Nanoscale Adv. 2021, 3, 2196–2212. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Fuku, R.; Chan, T.S.; Kraljevic, N.; Sedighi, A.; Piunno, P.A.E.; Krull, U.J. Bisphosphonate Polymeric Ligands on Inorganic Nanoparticles. Chem. Mater. 2020, 32, 4002–4012. [Google Scholar] [CrossRef]
- Ben-Akiva, E.; Karlsson, J.; Hemmati, S.; Yu, H.; Tzeng, S.Y.; Pardoll, D.M.; Green, J.J. Biodegradable Lipophilic Polymeric MRNA Nanoparticles for Ligand-Free Targeting of Splenic Dendritic Cells for Cancer Vaccination. Proc. Natl. Acad. Sci. USA 2023, 120, e2301606120. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Lin, G.; Zeng, Y.; Lei, Z.; Liu, G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front. Bioeng. Biotechnol. 2021, 9, 749381. [Google Scholar] [CrossRef]
- Robin, M.P.; O’Reilly, R.K. Strategies for Preparing Fluorescently Labelled Polymer Nanoparticles. Polym. Int. 2015, 64, 174–182. [Google Scholar] [CrossRef]
- Burke, B.P.; Cawthorne, C.; Archibald, S.J. Multimodal Nanoparticle Imaging Agents: Design and Applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170261. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.; Chang, H.; Xiao, J.; Cheng, Y. Stimuli-Responsive Dendrimers in Drug Delivery. Biomater. Sci. 2016, 4, 375–390. [Google Scholar] [CrossRef]
- Ben Haddada, M.; Movia, D.; Prina-Mello, A.; Spadavecchia, J. Docetaxel Gold Complex Nanoflowers: A Chemo-Biological Evaluation for Their Use as Nanotherapeutics. Colloids Surf. B Biointerfaces 2020, 194, 111172. [Google Scholar] [CrossRef]
- Haque, E.; Ward, A.C. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials 2018, 8, 561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, Q.; Lan, C.; Tang, T.; Wang, K.; Shen, J.; Niu, D. Nanoparticle Carriers Enhance RNA Stability and Uptake Efficiency and Prolong the Protection against Rhizoctonia Solani. Phytopathol. Res. 2023, 5, 2. [Google Scholar] [CrossRef]
- Ai, C.; Zhao, C.; Xiang, C.; Zheng, Y.; Zhong, S.; Teng, H.; Chen, L. Gum Arabic as a Sole Wall Material for Constructing Nanoparticle to Enhance the Stability and Bioavailability of Curcumin. Food Chem. X 2023, 18, 100724. [Google Scholar] [CrossRef]
- Esposito, E.; Drechsler, M.; Puglia, C.; Cortesi, R. New Strategies for the Delivery of Some Natural Anti-Oxidants with Therapeutic Properties. Mini-Rev. Med. Chem. 2019, 19, 1030–1039. [Google Scholar] [CrossRef]
- Craig, G.E.; Brown, S.D.; Lamprou, D.A.; Graham, D.; Wheate, N.J. Cisplatin-Tethered Gold Nanoparticles That Exhibit Enhanced Reproducibility, Drug Loading, and Stability: A Step Closer to Pharmaceutical Approval? Inorg. Chem. 2012, 51, 3490–3497. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052. [Google Scholar] [CrossRef]
- Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.S.; Ramakrishna, S. Nano-Based Drug Delivery Systems: Conventional Drug Delivery Routes, Recent Developments and Future Prospects. Med. Drug Discov. 2022, 15, 100134. [Google Scholar] [CrossRef]
- Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as Drug Delivery Systems. Pharmacol. Rep. 2012, 64, 1020–1037. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Fernandes, N.; de Melo-Diogo, D.; Correia, I.J.; Moreira, A.F. Cell-Derived Vesicles for Nanoparticles’ Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv. Healthc. Mater. 2022, 11, e2201214. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of Active Targeting Nanoparticle Delivery System for Chemotherapeutic Drugs and Traditional/Herbal Medicines in Cancer Therapy: A Systematic Review. Int. J. Nanomed. 2018, 13, 3921–3935. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Ingle, A.P.; Paralikar, P. Sulfur and Sulfur Nanoparticles as Potential Antimicrobials: From Traditional Medicine to Nanomedicine. Expert Rev. Anti-Infect. Ther. 2016, 14, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Sui, J.; Zhao, M.; Yang, Y.; Tong, L.; Liu, Y.; Sun, Y.; Fan, Y.; Liang, J.; Zhang, X. Targeted Inhibition of HER-2 Positive Breast Cancer Cells by Trastuzumab Functionalized Pullulan-Doxorubicin Nanoparticles. Polym. Test. 2022, 113, 107669. [Google Scholar] [CrossRef]
- Pavaloiu, R.-D.; Shaat, F.; Eremia, M.; Hlevca, C.; Petrescu, M.; Sha’at, M.; Sevcenco, C. Formulation and Characterisation of Pullulan Acetate Nanoparticles Loaded with 5-Fluorouracil. Mater. Plast. 2022, 59, 138–144. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, A.K. Hydrogel Pullulan Nanoparticles Encapsulating PBUDLacZ Plasmid as an Efficient Gene Delivery Carrier. J. Control. Release 2004, 99, 157–166. [Google Scholar] [CrossRef]
- Mahajan, H.S.; Jadhao, V.D.; Chandankar, S.M. Pullulan and Pluronic F-127 Based in Situ Gel System for Intranasal Delivery: Development, in Vitro and in Vivo Evaluation. J. Bioact. Compat. Polym. 2022, 37, 406–418. [Google Scholar] [CrossRef]
- Le, N.M.N.; Le-Vinh, B.; Friedl, J.D.; Jalil, A.; Kali, G.; Bernkop-Schnürch, A. Polyaminated Pullulan, a New Biodegradable and Cationic Pullulan Derivative for Mucosal Drug Delivery. Carbohydr. Polym. 2022, 282, 119143. [Google Scholar] [CrossRef]
- Li, H.Y.; Xu, E.Y. Dual Functional Pullulan-Based Spray-Dried Microparticles for Controlled Pulmonary Drug Delivery. Int. J. Pharm. 2023, 641, 123057. [Google Scholar] [CrossRef]
- Akiyoshi, K.; Kobayashi, S.; Shichibe, S.; Mix, D.; Baudys, M.; Wan Kim, S.; Sunamoto, J. Self-Assembled Hydrogel Nanoparticle of Cholesterol-Bearing Pullulan as a Carrier of Protein Drugs: Complexation and Stabilization of Insulin. J. Control. Release 1998, 54, 313–320. [Google Scholar] [CrossRef]
- Moonesi Rad, R.; Pazarçeviren, E.; Ece Akgün, E.; Evis, Z.; Keskin, D.; Şahin, S.; Tezcaner, A. In Vitro Performance of a Nanobiocomposite Scaffold Containing Boron-Modified Bioactive Glass Nanoparticles for Dentin Regeneration. J. Biomater. Appl. 2019, 33, 834–853. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, R.; Hirano, H.; Yamana, K.; Isozaki, H.; Kawamura, S.; Sanada, Y.; Bando, K.; Tabata, A.; Yoshikawa, K.; Azuma, H.; et al. Carborane Bearing Pullulan Nanogel-Boron Oxide Nanoparticle Hybrid for Boron Neutron Capture Therapy. Nanomed. Nanotechnol. Biol. Med. 2023, 49, 102659. [Google Scholar] [CrossRef]
- Al-Kassawneh, M.; Sadiq, Z.; Jahanshahi-Anbuhi, S. Pullulan-Stabilized Gold Nanoparticles Tablet as a Nanozyme Sensor for Point-of-Care Applications. Sens. Bio-Sens. Res. 2022, 38, 100526. [Google Scholar] [CrossRef]
- Varadhan, P.; Jayaraman, M. Hyalgan-Decorated-Ferulic Acid-Loaded Pullulan Acetate Nanoparticles against Gastrointestinal Cancer Cell Lines. Emergent. Mater. 2024, 7, 1115–1127. [Google Scholar] [CrossRef]
- Younas, A.; Dong, Z.; Hou, Z.; Asad, M.; Li, M.; Zhang, N. A Chitosan/Fucoidan Nanoparticle-Loaded Pullulan Microneedle Patch for Differential Drug Release to Promote Wound Healing. Carbohydr. Polym. 2023, 306, 120593. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Guo, H.; Bera, H.; Jiang, H.; Chen, Y.; Guo, X.; Tian, X.; Cun, D.; Yang, M. Engineering Transferrin-Decorated Pullulan-Based Prodrug Nanoparticles for Redox Responsive Paclitaxel Delivery to Metastatic Lung Cancer Cells. ACS Appl. Mater. Interfaces 2023, 15, 4441–4457. [Google Scholar] [CrossRef]
- Wu, S.; Yang, X.; Yang, X. Methotrexate and 10-Hydroxycamptothecine Loaded Pullulan Nanoparticles with the Targeting Property for Efficient Cancer Therapy. Mater. Technol. 2022, 37, 2777–2784. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, H.; Xiong, Q.; Li, M.; Dai, Y.; Zhou, Z. Placental Cell Translocation of Folate-Conjugated Pullulan Acetate Non-Spherical Nanoparticles. Colloids Surf. B Biointerfaces 2022, 216, 112553. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhang, M.; He, H.; Liang, B.; Sun, C.; Li, X.; Ji, C. The Loading of Epigallocatechin Gallate on Bovine Serum Albumin and Pullulan-Based Nanoparticles as Effective Antioxidant. Foods 2022, 11, 4074. [Google Scholar] [CrossRef]
- Kashif, M.U.R.; Sohail, M.; Khan, S.A.; Minhas, M.U.; Mahmood, A.; Shah, S.A.; Mohsin, S. Chitosan/Guar Gum-Based Thermoreversible Hydrogels Loaded with Pullulan Nanoparticles for Enhanced Nose-to-Brain Drug Delivery. Int. J. Biol. Macromol. 2022, 215, 579–595. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Wang, J.; Li, H.; Yang, H. Glycyrrhetinic Acid-Cyclodextrin Grafted Pullulan Nanoparticles Loaded Doxorubicin as a Liver Targeted Delivery Carrier. Int. J. Biol. Macromol. 2022, 216, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; He, X.; Yao, A.; You, Y.; Yang, F.; Chen, K.; Zhu, C.; Zeng, M.; Shi, Q.; Tang, W.; et al. The Properties of Cholesterol-Modified Pullulan Nanoparticles with Different PEG Coatings and Their Anti-Hepatoblastoma Cell Effects. Mater. Technol. 2022, 37, 2276–2288. [Google Scholar] [CrossRef]
- Wu, Y.; He, L.; Zhou, H. Preparation of Hydrophobically Modified Carboxylated Pullulan Nanoparticles for Evaluating the Effect of Hydrophobic Substitution on the Properties and Functions of Nanoparticles. Mater. Technol. 2022, 37, 1467–1477. [Google Scholar] [CrossRef]
- Ghaffarlou, M.; İlk, S.; Hammamchi, H.; Kıraç, F.; Okan, M.; Güven, O.; Barsbay, M. Green and Facile Synthesis of Pullulan-Stabilized Silver and Gold Nanoparticles for the Inhibition of Quorum Sensing. ACS Appl. Bio Mater. 2022, 5, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Jayeoye, T.J.; Supachettapun, C.; Muangsin, N. Toxic Ag+ Detection Based on Au@Ag Core Shell Nanostructure Formation Using Tannic Acid Assisted Synthesis of Pullulan Stabilized Gold Nanoparticles. Sci. Rep. 2023, 13, 1844. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Rhim, J.-W. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021, 10, 2789. [Google Scholar] [CrossRef] [PubMed]
- Salleh, M.S.N.; Ali, R.R.; Shameli, K.; Hamzah, M.Y.; Kasmani, R.M.; Nasef, M.M. Interaction Insight of Pullulan-Mediated Gamma-Irradiated Silver Nanoparticle Synthesis and Its Antibacterial Activity. Polymers 2021, 13, 3578. [Google Scholar] [CrossRef]
- Budiman, A.; Aulifa, D.L. Encapsulation of Drug into Mesoporous Silica by Solvent Evaporation: A Comparative Study of Drug Characterization in Mesoporous Silica with Various Molecular Weights. Heliyon 2021, 7, e08627. [Google Scholar] [CrossRef]
- Salleh, M.S.N.; Rasit Ali, R.; Shameli, K.; Hamzah, M.Y.; Chan, J.Z. Silver Nanoparticles on Pullulan Derived via Gamma Irradiation Method: A Preliminary Analysis. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 808. [Google Scholar]
- Budiman, A.; Nurfadilah, N.; Muchtaridi, M.; Sriwidodo, S.; Aulifa, D.L.; Rusdin, A. The Impact of Water-Soluble Chitosan on the Inhibition of Crystal Nucleation of Alpha-Mangostin from Supersaturated Solutions. Polymers 2022, 14, 4370. [Google Scholar] [CrossRef]
- Budiman, A.; Husni, P.; Shafira; Alfauziah, T.Q. The Development of Glibenclamide-Saccharin Cocrystal Tablet Formulations to Increase the Dissolution Rate of the Drug. Int. J. Appl. Pharm. 2019, 11, 359–364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, N.; Puluhulawa, L.E.; Cindana Mo’o, F.R.; Rusdin, A.; Gazzali, A.M.; Budiman, A. Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers 2024, 16, 2151. https://doi.org/10.3390/polym16152151
Thomas N, Puluhulawa LE, Cindana Mo’o FR, Rusdin A, Gazzali AM, Budiman A. Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers. 2024; 16(15):2151. https://doi.org/10.3390/polym16152151
Chicago/Turabian StyleThomas, Nurain, Lisa Efriani Puluhulawa, Faradila Ratu Cindana Mo’o, Agus Rusdin, Amirah Mohd Gazzali, and Arif Budiman. 2024. "Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness" Polymers 16, no. 15: 2151. https://doi.org/10.3390/polym16152151
APA StyleThomas, N., Puluhulawa, L. E., Cindana Mo’o, F. R., Rusdin, A., Gazzali, A. M., & Budiman, A. (2024). Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers, 16(15), 2151. https://doi.org/10.3390/polym16152151