Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Preparation
2.3. Characterization
3. Results and Discussion
3.1. Thermal and Mechanical Properties of Samples
3.2. Electrodynamic Properties of Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Ma, S.; Khor, C.M.; Su, Y.; Barani, Z.; Xu, Z.; Boyko, A.K.; Iddya, A.; Segev-Mark, N.; Zheng, X.; et al. One-step method for the fabrication of pure and metal-decorated densified CNT films for effective electromagnetic interference shielding. Carbon 2023, 214, 118370. [Google Scholar] [CrossRef]
- Singh, S.; Kapoor, N. Health Implications of Electromagnetic Fields, Mechanisms of Action, and Research Needs. Adv. Biol. 2014, 2014, 198609. [Google Scholar] [CrossRef]
- Jiang, B.; Qi, C.; Yang, H.; Wu, X.; Yang, W.; Zhang, C.; Li, S.; Wang, L.; Li, Y. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 2023, 208, 390–409. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Zhang, J.-Y.; Hou, Z.-L.; Bi, S.; Zhao, Q.-L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617. [Google Scholar] [CrossRef]
- Chai, J.; Cheng, J.; Zhang, D.; Xiong, Y.; Yang, X.; Ba, X.; Ullah, S.; Zheng, G.; Yan, M.; Cao, M. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloys Compd. 2020, 829, 154531. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Wang, F.; Huang, Q.; Ji, G. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517. [Google Scholar] [CrossRef]
- Geetha, S.; Satheesh Kumar, K.K.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C. EMI shielding: Methods and materials-A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Huang, J.-C. EMI shielding plastics: A review. Adv. Polym. Tech. 1995, 14, 137–150. [Google Scholar] [CrossRef]
- Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites—A Review. Polym. Rev. 2019, 59, 280–337. [Google Scholar] [CrossRef]
- Bhattacharjee, Y.; Arief, I.; Bose, S. Recent trends in multi-layered architectures towards screening electromagnetic radiation: Challenges and perspectives. J. Mater. Chem. C 2017, 5, 7390–7403. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zheng, Q.; Zheng, Y.-J.; Cao, M.-S. Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 2023, 206, 124–141. [Google Scholar] [CrossRef]
- Cao, M.; Wang, X.; Cao, W.; Fang, X.; Wen, B.; Yuan, J. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 2018, 14, e1800987. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.-S.; Shu, J.-C.; Wen, B.; Wang, X.-X.; Cao, W.-Q. Genetic Dielectric Genes Inside 2D Carbon-Based Materials with Tunable Electromagnetic Function at Elevated Temperature. Small Struct. 2021, 2, e2100104. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhang, M.; Shu, J.-C.; Wen, B.; Cao, W.-Q.; Cao, M.-S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145. [Google Scholar] [CrossRef]
- Durmaz, B.U.; Salman, A.O.; Aytac, A. Electromagnetic Interference Shielding Performances of Carbon-Fiber-Reinforced PA11/PLA Composites in the X-Band Frequency Range. ACS Omega 2023, 8, 22762–22773. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chung, D.D.L. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos. Part B Eng. 1999, 30, 227–231. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wu, C.-C. The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites. Eur. Polym. J. 2000, 36, 2729–2737. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Džuganová, M.; Dosoudil, R.; Hudec, I.; Krump, H. The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites. Polymers 2024, 16, 566. [Google Scholar] [CrossRef] [PubMed]
- Bleija, M.; Platnieks, O.; Macutkevič, J.; Banys, J.; Starkova, O.; Grase, L.; Gaidukovs, S. Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties. Polymers 2023, 15, 515. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Cheng, Y.; Ma, Z.; Zhan, Y.; Xia, H. Constructing a Segregated Magnetic Graphene Network in Rubber Composites for Integrating Electromagnetic Interference Shielding Stability and Multi-Sensing Performance. Polymers 2021, 13, 3277. [Google Scholar] [CrossRef]
- Jia, X.; Li, Y.; Shen, B.; Zheng, W. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Compos. Part B Eng. 2022, 233, 109652. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Meng, J.; Zhang, K. Anisotropic PDMS/Alumina/Carbon Fiber Composites with a High Thermal Conductivity and an Electromagnetic Interference Shielding Performance. Materials 2022, 15, 8078. [Google Scholar] [CrossRef]
- Choi, H.-S.; Park, J.-W.; Lee, K.-S.; Kim, S.-W.; Suh, S.-J. Thermal Conductivity and Electromagnetic Interference (EMI) Absorbing Properties of Composite Sheets Composed of Dry Processed Core–Shell Structured Fillers and Silicone Polymers. Polymers 2020, 12, 2318. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Guo, Z.-Z.; Guo, H.; Jia, L.-C.; Zhao, Y.-C.; Ren, P.-G.; Yan, D.-X. Layer-Structured Design and Fabrication of Cyanate Ester Nanocomposites for Excellent Electromagnetic Shielding with Absorption-Dominated Characteristic. Polymers 2018, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Huan, X.; Shi, K.; Yan, J.; Lin, S.; Li, Y.; Jia, X.; Yang, X. High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification. Compos. Part B Eng. 2020, 193, 107987. [Google Scholar] [CrossRef]
- Wong, K.H.; Pickering, S.J.; Rudd, C.D. Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2010, 41, 693–702. [Google Scholar] [CrossRef]
- Hanaoka, T.; Ikematsu, H.; Takahashi, S.; Ito, N.; Ijuin, N.; Kawada, H.; Arao, Y.; Kubouchi, M. Recovery of carbon fiber from prepreg using nitric acid and evaluation of recycled CFRP. Compos. Part B Eng. 2022, 231, 109560. [Google Scholar] [CrossRef]
- Kornilitsina, E.V.; Lebedeva, E.A.; Astaf’eva, S.A.; Trukhinov, D.K.; Knyazev, N.S.; Malkin, A.I.; Knyazev, S.T.; Korotkov, A.N.; Balasoiu, M. Enhanced electrodynamic properties acrylonitrile butadiene styrene composites containing short-chopped recycled carbon fibers and magnetite. Diamond Relat. Mater. 2023, 135, 109814. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, R.; Kachhavah, V.S.; Kar, K.K. Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 2016, 6, 50559–50571. [Google Scholar] [CrossRef]
- Lebedeva, E.A.; Astaf’eva, S.A.; Istomina, T.S.; Trukhinov, D.K.; Il’inykh, G.V.; Slyusar’, N.N. Application of Low-Temperature Solvolysis for Processing of Reinforced Carbon Plastics. Russ. J. Appl. Chem. 2020, 93, 845–853. [Google Scholar] [CrossRef]
- ASTM E1952-11; Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. ASTM: West Conshohocken, PA, USA, 2011.
- ISO 11357-4:2005; Plastics—Differential scanning calorimetry (DSC)—Part 4: Determination of specific heat capacity. International Organization of Standarization: Geneva, Switzerland, 2005.
- GOST 14236-81; Polymer Films—Tensile Test Method. Ministry of Chemical Industry: Moscow, Russia, 1981.
- Malkin, A.I.; Knyazev, N.S. Dielectric permittivity and permeability measurement system. In Proceedings of the CEUR Workshop Proceedings, Yekaterinburg, Russia, 9 December 2017; Volume 1814, pp. 45–51. [Google Scholar]
- Malkin, A.; Chechetkin, V.; Korotkov, A.; Knyazev, N. Estimation of uncertainty of permittivity measurement with transmission line method in the wide frequency range. In Proceedings of the IEEE 2021 29th Telecommunications Forum (TELFOR), Virtual, 23–24 November 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Kashiwaya, Y.; Yamaguchi, Y.; Kinoshita, H.; Ishii, K. In Situ Observation of Reduction Behavior of Hematite with Solid Carbon and Crystallographic Orientation between Hematite and Magnetite. ISIJ Int. 2007, 47, 226–233. [Google Scholar] [CrossRef]
- Abe, K.; Kurniawan, A.; Ohashi, K.; Nomura, T.; Akiyama, T. Ultrafast Iron-Making Method: Carbon Combustion Synthesis from Carbon-Infiltrated Goethite Ore. ACS Omega 2018, 3, 6151–6157. [Google Scholar] [CrossRef] [PubMed]
- Khaki, J.V.; Kashiwaya, Y.; Ishii, K.; Suzuki, H. Intensive Improvement of Reduction Rate of Hematite–Graphite Mixture by Mechanical Milling. ISIJ Int. 2002, 42, 13–22. [Google Scholar] [CrossRef]
- Duh, Y.-S.; Ho, T.-C.; Chen, J.-R.; Kao, C.-S. Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers 2010, 2, 174–187. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, J.; Zhao, C.; Yun, K.; Qi, L. Effect of interfacial transition layer with CNTs on fracture toughness and failure mode of carbon fiber reinforced aluminum matrix composites. Compos. Appl. Sci. Manuf. 2022, 163, 107201. [Google Scholar] [CrossRef]
- Dul, S.; Alonso Gutierrez, B.J.; Pegoretti, A.; Alvarez-Quintana, J.; Fambri, L. 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. J. Mater. Sci. Technol. 2022, 121, 52–66. [Google Scholar] [CrossRef]
- Fonseca, L.P.; Waldman, W.R.; De Paoli, M.A. ABS composites with cellulose fibers: Towards fiber-matrix adhesion without surface modification. Compos. Part C Open Access 2021, 5, 100142. [Google Scholar] [CrossRef]
- Tager, A.A. Fiziko-Khimiya Polimerov, 4th ed.; Nauchniy Mir: Moscow, Russia, 2007. [Google Scholar]
- Sezer, H.K.; Eren, O. FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J. Manuf. Process. 2019, 37, 339–347. [Google Scholar] [CrossRef]
- Vitorino, L.S.; Oréfice, R.L. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites. Polímeros 2017, 27, 330–338. [Google Scholar] [CrossRef]
- Lebedeva, E.A.; Astaf’eva, S.A.; Istomina, T.S.; Trukhinov, D.K.; Shamsutdinov, A.S.; Strel’nikov, V.N.; Kukharenko, A.I.; Zhidkov, I.S. Novel approach to recycled carbon fiber suitability assessment for additive technologies. Appl. Surf. Sci. 2022, 602, 154251. [Google Scholar] [CrossRef]
- Du, H.; Zhang, J.; Fang, C.; Weng, G.J. Modeling the evolution of graphene agglomeration and the electrical and mechanical properties of graphene/polypropylene nanocomposites. J. Appl. Polym. Sci. 2022, 140, e53292. [Google Scholar] [CrossRef]
- Ukhin, K.O.; Nechaev, A.I.; Valtsifer, V.A.; Strelnikov, V.N. Computational description of morphology of dispersive components’ spatial structures in polymer composites. J. Compos. Mater. 2016, 50, 2433–2442. [Google Scholar] [CrossRef]
- Minakova, N.N. Evaluation of the contribution of the agglomered component to the formation of the electrical conductivity of filled polymers according to comparative characteristics microphotography of the structure. Polzunovskiy Vestnik 2022, 1, 147–153. [Google Scholar] [CrossRef]
- Chippendale, R.D.; Golosnoy, I.O. Percolation effects in electrical conductivity of Carbon Fibre Composites. In Proceedings of the IET 8th International Conference (CEM 2011), Wroclaw, Poland, 11–14 April 2011; pp. 1–2. [Google Scholar] [CrossRef]
- Geyer, R.G. (Ed.) Dielectric Characterization and Reference Materials; Fb&cLimited: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Mondal, S.; Lee, M.; Kim, S.; Huh, Y.-I.; Nah, C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 129282. [Google Scholar] [CrossRef]
- Shi, S.; Wang, Y.; Jiang, T.; Wu, X.; Tang, B.; Gao, Y.; Zhong, N.; Sun, K.; Zhao, Y.; Li, W.; et al. Carbon Fiber/Phenolic Composites with High Thermal Conductivity Reinforced by a Three-Dimensional Carbon Fiber Felt Network Structure. ACS Omega 2022, 7, 29433–29442. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shi, S.; Tang, B.; Chen, J.; Shan, L.; Gao, Y.; Wang, Y.; Jiang, T.; Sun, K.; Yang, K.; et al. Achieving highly thermal conductivity of polymer composites by adding hybrid silver–carbon fiber fillers. Compos. Commun. 2022, 31, 101129. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, C.; Gao, T.; Bando, Y.; Golberg, D.; Dai, P.; Hu, M.; Ma, R.; Hu, Z.; Wang, X.-B. Flexible conductive polymer composite materials based on strutted graphene foam. Compos. Commun. 2021, 25, 100757. [Google Scholar] [CrossRef]
- Wang, G.; Liao, X.; Zou, F.; Song, P.; Tang, W.; Yang, J.; Li, G. Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos. Commun. 2021, 28, 100953. [Google Scholar] [CrossRef]
- Kim, H.S.; Jang, J.-U.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos. Part B Eng. 2015, 79, 505–512. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Li, X.; Xu, T.; Cao, W.; Wang, M.; Chen, F.; Jin, L.; Song, N.; Sun, S.; Ding, P. Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chem. Eng. J. 2023, 464, 142595. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Shen, B.; Zheng, W. Biomass-based Co/C@Carbon composites derived from MOF-modified cotton fibers for enhanced electromagnetic attenuation. Carbon 2023, 210, 118035. [Google Scholar] [CrossRef]
- Cui, C.; Guo, R.; Ren, E.; Xiao, H.; Zhou, M.; Lai, X.; Qin, Q.; Jiang, S.; Qin, W. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626. [Google Scholar] [CrossRef]
- Han, C.; Zhang, M.; Cao, W.-Q.; Cao, M.-S. Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962. [Google Scholar] [CrossRef]
№ | Samples | Amount of Filler, wt % | ||
---|---|---|---|---|
rCF | Fe3O4 | Total Amount | ||
1 | ABS/Fe3O4-1 | - | 1 | 1 |
2 | ABS/Fe3O4-3 | - | 3 | 3 |
3 | ABS/Fe3O4-5 | - | 5 | 5 |
4 | ABS/rCF-1 | 1 | - | 1 |
5 | ABS/rCF-3 | 3 | - | 3 |
6 | ABS/rCF-5 | 5 | - | 5 |
7 | ABS/rCF/Fe3O4-1 | 0.5 | 0.5 | 1 |
8 | ABS/rCF/Fe3O4-3 | 1.5 | 1.5 | 3 |
9 | ABS/rCF/Fe3O4-5 | 2.5 | 2.5 | 5 |
10 | ABS/rCF/Fe3O4-6 | 3 | 3 | 6 |
Sample | Temperature of the 5% Weight Loss, °C | Glass Transition Temperature, °C | Thermal Conductivity, W/(m•K) | Heat Capacity, kJ/(kg °C) |
---|---|---|---|---|
ABS | 345 | 80.0 | 0.15 | 1.36 |
ABS/rCF-1 | 354 | 97.3 | 0.15 | 1.30 |
ABS/rCF-3 | 349 | 98.2 | 0.17 | 1.28 |
ABS/rCF-5 | 346 | 99.3 | 0.17 | 1.25 |
ABS/Fe3O4-1 | 351 | 89.7 | 0.15 | 1.30 |
ABS/Fe3O4-3 | 353 | 97.8 | 0.15 | 1.30 |
ABS/Fe3O4-5 | 346 | 99.0 | 0.17 | 1.30 |
ABS/rCF/Fe3O4-1 | 353 | 96.2 | 0.15 | 1.37 |
ABS/rCF/Fe3O4-3 | 338 | 97.9 | 0.15 | 1.28 |
ABS/rCF/Fe3O4-5 | 338 | 99.6 | 0.15 | 1.23 |
Frequency, GHz | εr′ | εr″ | σd, S/m |
---|---|---|---|
8 | 2.4806 | 0.085 | 0.037 |
10 | 2.4804 | 0.115 | 0.064 |
12 | 2.4709 | 0.089 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, E.A.; Ivanova, E.V.; Trukhinov, D.K.; Istomina, T.S.; Knyazev, N.S.; Malkin, A.I.; Chechetkin, V.A.; Korotkov, A.N.; Balasoiu, M.; Astaf’eva, S.A. Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers. Polymers 2024, 16, 2153. https://doi.org/10.3390/polym16152153
Lebedeva EA, Ivanova EV, Trukhinov DK, Istomina TS, Knyazev NS, Malkin AI, Chechetkin VA, Korotkov AN, Balasoiu M, Astaf’eva SA. Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers. Polymers. 2024; 16(15):2153. https://doi.org/10.3390/polym16152153
Chicago/Turabian StyleLebedeva, Elena A., Elena V. Ivanova, Denis K. Trukhinov, Tatiana S. Istomina, Nikolay S. Knyazev, Alexander I. Malkin, Victor A. Chechetkin, Alexey N. Korotkov, Maria Balasoiu, and Svetlana A. Astaf’eva. 2024. "Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers" Polymers 16, no. 15: 2153. https://doi.org/10.3390/polym16152153
APA StyleLebedeva, E. A., Ivanova, E. V., Trukhinov, D. K., Istomina, T. S., Knyazev, N. S., Malkin, A. I., Chechetkin, V. A., Korotkov, A. N., Balasoiu, M., & Astaf’eva, S. A. (2024). Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers. Polymers, 16(15), 2153. https://doi.org/10.3390/polym16152153