Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Analysis of the CF/PLA Composite
3.2. Mechanical Properties of the CF/PLA Composite
3.3. Thermal Properties of CF/PLA Composite
3.4. Process Optimization for FDM 3D Printing
4. Conclusions
- (1)
- The incorporation of carbon fiber (CF) into PLA forms a composite that benefits from a well-dispersed CF skeleton structure. This structure enhances the surface density and overall mechanical properties of the PLA composite by effectively conducting and absorbing energy. However, excessive CF content can lead to microscopic defects and aggregation.
- (2)
- With 5 wt.% CF, the tensile strength, fracture elongation, bending strength, and impact strength of the PLA composite are measured at 56.06 MPa, 6.16%, 65.70 MPa, and 3.27 kJ/m2, respectively. These properties declined with higher CF content (10 wt.%).
- (3)
- CFs with good thermal conductivity and heat resistance contribute to hindering the fracture of PLA molecular chains and enhancing thermal stability. For instance, the thermal decomposition temperature of PLA increased from 245 °C to 255 °C and 265 °C with 5 wt.% and 10 wt.% CF, respectively.
- (4)
- Orthogonal experiments identified key factors influencing the tensile strength of CF/PLA composites as printing layer thickness, hot bed temperature, printing speed, and nozzle temperature. Achieving strong interlayer adhesion in CF/PLA prints requires using a thin printing layer thickness. Optimal hot bed temperatures and controlled printing speeds are essential to minimize internal stresses, thus maintaining the excellent mechanical strength of the printed product.
- (5)
- To maximize tensile strength in PLA samples, optimal conditions include a printing layer thickness of 0.1 mm, a hot bed temperature of 60 °C, a printing speed of 40 mm/s, and a nozzle temperature of 215 °C. These parameters collectively contribute to producing high-quality prints with superior mechanical properties suitable for diverse industrial and functional uses.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 2020, 578, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.D.; Guo, J.H.; Shao, C.K.; Chen, C.F. Flexible Thermoplastic Polyurethane Composites with UV-Resistance for Fused Deposition Modeling 3D Printing. 3D Print. Addit. Manuf. 2023, 10. [Google Scholar]
- Tümer, E.H.; Erbil, H.Y. Extrusion-based 3D printing applications of PLA composites: A review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Alarifi, I.M. A performance evaluation study of 3D printed nylon/glass fiber and nylon/carbon fiber composite materials. J. Mater. Res. Technol. 2022, 21, 884–892. [Google Scholar] [CrossRef]
- Billah, K.M.M.; Heineman, J.; Mhatre, P.; Roschli, A.; Post, B.; Kumar, V.; Kim, S.; Haye, G.; Jackson, J.; Skelton, Z.; et al. Large-scale additive manufacturing of self-heating molds. Addit. Manuf. 2021, 47, 102282. [Google Scholar] [CrossRef]
- Chen, C.F.; Zhong, W.W.; Guo, J.H.; Liu, K.; Wang, A.D. Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM. J. Polym. Eng. 2023, 43, 875–883. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019, 175, 107147. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; Samper, M.D.; Motoc, D.L.; Ferrandiz, S.; López-Martínez, J. Mechanical, dynamic-mechanical, thermal and decomposition behavior of 3D-printed PLA reinforced with CaCO3 fillers from natural resources. Polymers 2022, 14, 2646. [Google Scholar] [CrossRef]
- Jamnongkan, T.; Jaroensuk, O.; Khankhuean, A.; Laobuthee, A.; Srisawat, N.; Pangon, A.; Mongkholrattanasit, R.; Phuengphai, P.; Wattanakornsiri, A.; Huang, C.-F. A comprehensive evaluation of mechanical, thermal, and antibacterial properties of PLA/ZnO nanoflower biocomposite filaments for 3D printing application. Polymers 2022, 14, 600. [Google Scholar] [CrossRef]
- Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials 2018, 11, 1947. [Google Scholar] [CrossRef]
- Abdellah, M.Y.; Hassan, M.K.; Mohamed, A.F.; Backar, A.H. Cyclic relaxation, impactproperties and fracture toughness of carbon and glass fiber reinforced composite laminates. Materials 2021, 14, 7412. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 107667. [Google Scholar] [CrossRef]
- Suteja, J.; Firmanto, H.; Soesanti, A.; Christian, C. Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite. J. Thermoplast. Compos. Mater. 2022, 35, 2052–2061. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 2019, 181, 121803. [Google Scholar] [CrossRef]
- Goh, G.D.; Dikshit, V.; Nagalingam, A.P.; Goh, G.L.; Agarwala, S.; Sing, S.L.; Wei, J.; Yeong, W.Y. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 2018, 137, 79–89. [Google Scholar] [CrossRef]
- Chen, C.F.; Shao, M.W.; Liu, K.; Zhong, W.W.; Djassi, I.; Wang, A.D. Enhanced thermal and electrical properties of photosensitive resin matrix composites with hexagonal boron nitride nanosheets. J. Inorg. Organomet. Polym. Mater. 2023, 33, 319–327. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 2018, 24, 1317–1324. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M. Parameter effects and process modeling of FFF-TPU mechanical response. Mater. Manuf. Process. 2023, 38, 341–351. [Google Scholar] [CrossRef]
- Elmrabet, N.; Siegkas, P. Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polym. Test. 2020, 90, 106656. [Google Scholar] [CrossRef]
- Rodríguez, L.; Naya, G.; Bienvenido, R. Study for the selection of 3D printing parameters for the design of TPU products. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012035. [Google Scholar] [CrossRef]
- GB/T1040.2-2006; Plastics-Determination of Tensile Properties. Standards Press of China: Beijing, China, 2006.
- GB/T 9341-2008; Plastics-Determination of Flexural Properties. Standards Press of China: Beijing, China, 2008.
- GB/T 1843-2008; Plastics-Determination of Izod Impact Strength. Standards Press of China: Beijing, China, 2008.
- GB/T 2411-2008; Plastics and Ebonite-Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). Standards Press of China: Beijing, China, 2008.
- Gu, H.; Ying, S.; Ding, Y.; Hu, Q.; Wan, L.; Zhang, C. Influence of chopped carbon fibers on a novel mechanical enhanced micro-porous propellants. Combust. Sci. Technol. 2021, 194, 3277–3293. [Google Scholar] [CrossRef]
- Xiang, S.; Feng, L.; Bian, X.; Li, G.; Chen, X. Evaluation of PLA content in PLA/PBAT blends using TGA. Polym. Test. 2020, 81, 106211. [Google Scholar] [CrossRef]
- Hanon, M.M.; Zsidai, L. Comprehending the role of process parameters and filament colour on the structure and tribological performance of 3D printed PLA. J. Mater. Res. Technol. 2021, 15, 647–660. [Google Scholar] [CrossRef]
- Rimašauskas, M.; Jasiūnienė, E.; Kuncius, T.; Rimašauskienė, R.; Cicėnas, V. Investigation of influence of printing parameters on the quality of 3D printed composite structures. Compos. Struct. 2022, 281, 115061. [Google Scholar] [CrossRef]
PLA Sample | Theoretical Density (g/cm3) | Actual Density (g/cm3) | Shore Hardness (HD) |
---|---|---|---|
Pure PLA | 1.2400 | 1.2400 | 77 |
PLA + 5 wt.% CF | 1.2655 | 1.2600 | 81 |
PLA + 10 wt.% CF | 1.2910 | 1.2800 | 82 |
Factor | A (Printing Layer Thickness/mm) | B (Nozzle Temperature/°C) | C (Hot Bed Temperature/°C) | D (Printing Speed/mm/s) | |
---|---|---|---|---|---|
Level | |||||
1 | 0.10 | 205 | 30 | 20 | |
2 | 0.15 | 210 | 40 | 40 | |
3 | 0.20 | 215 | 50 | 60 | |
4 | 0.25 | 220 | 60 | 80 |
Test Group | A | B | C | D | Tensile Strength (MPa) |
---|---|---|---|---|---|
1 | 1 (0.10) | 1 (205) | 1 (30) | 1 (20) | 53.792 |
2 | 1 (0.10) | 2 (210) | 2 (40) | 2 (40) | 55.822 |
3 | 1 (0.10) | 3 (215) | 3 (50) | 3 (60) | 56.186 |
4 | 1 (0.10) | 4 (220) | 4 (60) | 4 (80) | 55.220 |
5 | 2 (0.15) | 1 (205) | 2 (40) | 3 (60) | 50.544 |
6 | 2 (0.15) | 2 (210) | 1 (30) | 4 (80) | 47.646 |
7 | 2 (0.15) | 3 (215) | 4 (60) | 1 (20) | 54.758 |
8 | 2 (0.15) | 4 (220) | 3 (50) | 2 (40) | 53.134 |
9 | 3 (0.20) | 1 (205) | 3 (50) | 4 (80) | 47.772 |
10 | 3 (0.20) | 2 (210) | 4 (60) | 3 (60) | 49.508 |
11 | 3 (0.20) | 3 (215) | 1 (30) | 2 (40) | 47.982 |
12 | 3 (0.20) | 4 (220) | 2 (40) | 1 (20) | 48.514 |
13 | 4 (0.25) | 1 (205) | 4 (60) | 2 (40) | 49.508 |
14 | 4 (0.25) | 2 (210) | 3 (50) | 1 (20) | 48.094 |
15 | 4 (0.25) | 3 (215) | 2 (40) | 4 (80) | 43.432 |
16 | 4 (0.25) | 4 (220) | 1 (30) | 3 (60) | 44.174 |
Range | A | B | C | D |
---|---|---|---|---|
K1 | 221.02 | 201.62 | 193.59 | 205.16 |
K2 | 206.08 | 201.07 | 198.31 | 206.45 |
K3 | 193.78 | 202.36 | 205.19 | 200.41 |
K4 | 185.21 | 201.04 | 208.99 | 194.07 |
k1 | 55.26 | 50.40 | 48.40 | 51.29 |
k2 | 51.52 | 50.27 | 49.58 | 51.61 |
k3 | 48.44 | 50.59 | 51.30 | 50.10 |
k4 | 46.30 | 50.26 | 52.25 | 48.52 |
R | 8.95 | 0.33 | 3.85 | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Tang, X.; Zeng, Y.; Zou, L.; Bai, F.; Chen, C. Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing. Polymers 2024, 16, 2135. https://doi.org/10.3390/polym16152135
Wang A, Tang X, Zeng Y, Zou L, Bai F, Chen C. Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing. Polymers. 2024; 16(15):2135. https://doi.org/10.3390/polym16152135
Chicago/Turabian StyleWang, Andong, Xinting Tang, Yongxian Zeng, Lei Zou, Fan Bai, and Caifeng Chen. 2024. "Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing" Polymers 16, no. 15: 2135. https://doi.org/10.3390/polym16152135
APA StyleWang, A., Tang, X., Zeng, Y., Zou, L., Bai, F., & Chen, C. (2024). Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing. Polymers, 16(15), 2135. https://doi.org/10.3390/polym16152135