Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications
Abstract
:1. Introduction
2. Preparation Methods of IRMOF-3
2.1. Solvothermal Method
2.2. Microwave-Assisted Method
2.3. Sonochemical Method
2.4. Microfluidic System Method
2.5. Electrochemical Method
2.6. Heating Reflux Stirring Method
2.7. Room-Temperature Stirring Method
3. Functional Modification of IRMOF-3
3.1. Covalent Post-Synthesis Modification
3.2. Tandem Post-Synthesis Modification
3.3. Insert Reactants Synthesis Modification
3.3.1. Insert Mixed Ligand Synthetic Modification
3.3.2. Insert Mixed-Metal Sources Synthetic Modification
3.3.3. Insert Modified Materials Synthetic Modification
3.3.4. Core–Shell Structure Synthetic Modification
3.4. Encapsulation Post-Synthesis Modification
4. Applications of IRMOF-3
4.1. Chemical Catalysis
4.2. Hydrogen Storage
4.3. Adsorption and Separation
4.4. Carrier Material
4.5. Fluorescence Detection
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Rocio-Bautista, P.; Taima-Mancera, I.; Pasan, J.; Pino, V. Metal-Organic Frameworks in Green Analytical Chemistry. Separations 2019, 6, 33. [Google Scholar] [CrossRef]
- Yu, J.; Mu, C.; Yan, B.Y.; Qin, X.Y.; Shen, C.; Xue, H.G.; Pang, H. Nanoparticle/MOF composites: Preparations and applications. Mater. Horiz. 2017, 4, 557–569. [Google Scholar] [CrossRef]
- Liang, J.W.; Huang, Z.Y.; Wang, K.Y.; Zhang, L.R.; Wan, Y.H.; Yang, T.; Zeng, H. Ultrasensitive visual detection of the food-borne pathogen via MOF encapsulated enzyme. Talanta 2023, 259, 124503. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Ji, Y.; Wang, Y.P.; Liu, C.X.; Chen, Z.Y.; Tang, J.L.; Hong, Y.W.; Li, X.; Zheng, T.T.; Jiang, Q.; et al. Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction. Nano-Micro Lett. 2023, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Gurmessa, B.K.; Taddesse, A.M.; Teju, E. UiO-66 (Zr-MOF): Synthesis, Characterization, and Application for the Removal of Malathion and 2, 4-D from Aqueous Solution. Environ. Pollut. Bioavailab. 2023, 35, 2222910. [Google Scholar] [CrossRef]
- Begum, S.; Haikal, R.R.; Ibrahim, A.H.; Safy, M.A.E.; Tsotsalas, M.; Alkordi, M.H. Flash synthesis for conformal monolithic coatings of the Zr-based metal-organic framework (UiO-66-NH2) on non-modified surfaces: Applications in thin-film electrode systems. Surf. Interfaces 2020, 20, 100587. [Google Scholar] [CrossRef]
- ElHussein, E.A.A.; Sahin, S.; Bayazit, S.S. Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. J. Environ. Chem. Eng. 2020, 8, 103898. [Google Scholar] [CrossRef]
- Liu, N.; Hu, B.; Tang, K.; Xia, T.; Li, F.; Quan, G.; Zhang, X.; Tang, L. Assembling UiO-66 into layered HTiNbO5 nanosheets for efficient photocatalytic CO2 reduction. Surf. Interfaces 2023, 41, 103134. [Google Scholar] [CrossRef]
- Gomar, M.; Yeganegi, S. Adsorption of 5-Fluorouracil and Thioguanine drugs into ZIF-1, ZIF-3 and ZIF-6 by simulation methods. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 97, 461–466. [Google Scholar] [CrossRef]
- Kim, E.; Umar, A.; Ameen, S.; Kumar, R.; Ibrahim, A.A.; Alhamami, M.A.M.; Akhtar, M.S.; Baskoutas, S. Synthesis and characterizations of ZIF-8/GO and ZIF-8/rGO composites for highly sensitive detection of Cu2+ ions. Surf. Interfaces 2023, 41, 103163. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Al-bonayan, A.M.; Alsharief, H.H.; Aljohani, M.; Alshammari, K.F.; Saad, F.A.; Abumelha, H.M.; El-Metwaly, N.M. Efficient removal of carbofuran by sono-photo active CdS@MIL based Ti Framework. Surf. Interfaces 2023, 40, 103133. [Google Scholar] [CrossRef]
- Grad, O.; Blanita, G.; Lazar, M.D.; Mihet, M. Methanation of CO2 Using MIL-53-Based Catalysts: Ni/MIL-53-Al2O3 versus Ni/MIL-53. Catalysts 2021, 11, 1412. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, Z.; Chen, J.; Yang, Y.; Ding, C.; Yang, Y.; Wang, Y.; Liu, N.; Wang, L.; Zhang, X. Recent research progress and challenges of MIL-88(Fe) from synthesis to advanced oxidation process. Surf. Interfaces 2022, 30, 101843. [Google Scholar] [CrossRef]
- Emam, H.E.; El-Shahat, M.; Taha, M.; Abdelhameed, R.M. Microwave assisted post-synthetic modification of IRMOF-3 and MIL-68-NH2 onto cotton for Fuel purification with computational explanation. Surf. Interfaces 2022, 30, 101940. [Google Scholar] [CrossRef]
- Yin, D.G.; Hu, X.L.; Cai, M.R.; Wang, K.X.; Peng, H.Y.; Bai, J.; Xv, Y.; Fu, T.T.; Dong, X.; Ni, J.; et al. Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells. Molecules 2022, 27, 3940. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, N.; Kose, A.; Fellah, M.F. A DFT investigation of hydrogen adsorption and storage properties of Mg decorated IRMOF-16 structure. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128510. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Wang, K.X.; Cai, M.R.; Yin, D.G.; Hu, X.L.; Peng, H.Y.; Zhu, R.Y.; Liu, M.T.; Xu, Y.C.; Qu, C.H.; Ni, J.; et al. IRMOF-8-encapsulated curcumin as a biocompatible, sustained-release nano-preparation. Appl. Organomet. Chem. 2022, 36, e6680. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.C.; Pang, J.D.; Bosch, M.; Lollar, C.; Sun, Y.J.; Qin, J.S.; Yang, X.Y.; Zhang, P.; et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef]
- Taghavi, R.; Rostamnia, S. Four-Component Synthesis of Polyhydroquinolines via Unsymmetrical Hantzsch Reaction Employing Cu-IRMOF-3 as a Robust Heterogeneous Catalyst. Chem. Methodol. 2022, 6, 639–648. [Google Scholar] [CrossRef]
- Rostamnia, S.; Morsali, A. Basic isoreticular nanoporous metal-organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Adv. 2014, 4, 10514–10518. [Google Scholar] [CrossRef]
- Rostamnia, S.; Morsali, A. Size-controlled crystalline basic nanoporous coordination polymers of Zn4O(H2N-TA)(3): Catalytically study of IRMOF-3 as a suitable and green catalyst for selective synthesis of tetrahydro-chromenes. Inorganica Chim. Acta 2014, 411, 113–118. [Google Scholar] [CrossRef]
- Hoskins, B.F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554. [Google Scholar]
- Wang, Z.Q.; Cohen, S.M. Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem. Soc. 2007, 129, 12368–12369. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Cohen, S.M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, C.; Xu, L.; Zhang, N. Thermal Decomposition Investigation of Zn4O(NH2-BDC)(3) (IRMOF-3) and NH2-BDC by in situ DRIFTS. Asian J. Chem. 2013, 25, 1937–1941. [Google Scholar]
- Wu, S.H.; Ma, X.; Ran, J.Y.; Zhang, Y.F.; Qin, F.X.; Liu, Y. Application of basic isoreticular nanoporous metal-organic framework: IRMOF-3 as a suitable and efficient catalyst for the synthesis of chalcone. RSC Adv. 2015, 5, 14221–14227. [Google Scholar] [CrossRef]
- Galaco, A.; Jesus, L.T.; Freire, R.O.; de Oliveira, M.; Serra, O.A. Experimental and Theoretical Studies of Glyphosate Detection in Water by an Europium Luminescent Complex and Effective Adsorption by HKUST-1 and IRMOF-3. J. Agric. Food Chem. 2020, 68, 9664–9672. [Google Scholar] [CrossRef]
- Liu, H.; Ding, W.; Lei, S.H.; Tian, X.P.; Zhou, F.B. Selective Adsorption of CH4/N−2 on Ni-based MOF/SBA-15 Composite Materials. Nanomaterials 2019, 9, 149. [Google Scholar] [CrossRef]
- Guo, H.X.; Zheng, Z.S.; Zhang, Y.H.; Lin, H.B.; Xu, Q.B. Highly selective detection of Pb2+ by a nanoscale Ni-based metal-organic framework fabricated through one-pot hydrothermal reaction. Sens. Actuators B Chem. 2017, 248, 430–436. [Google Scholar] [CrossRef]
- Mai, Z.H.; Liu, D.X. Synthesis and Applications of Isoreticular Metal-Organic Frameworks IRMOFs-n (n=1, 3, 6, 8). Cryst. Growth Des. 2019, 19, 7439–7462. [Google Scholar] [CrossRef]
- Rathod, V.N.; Bansode, N.D.; Thombre, P.B.; Lande, M.K. Efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch condensation using IRMOF-3 as heterogeneous and reusable catalyst. J. Chin. Chem. Soc. 2021, 68, 601–609. [Google Scholar] [CrossRef]
- Isobe, T.; Arai, Y.; Yanagida, S.; Matsushita, S.; Nakajima, A. Solvothermal preparation and gas permeability of an IRMOF-3 membrane. Microporous Mesoporous Mater. 2017, 241, 218–225. [Google Scholar] [CrossRef]
- Su, J.; Guan, J.; Fang, L.; Xu, Z.; Xiao, Y. Synthesis and Antibacterial Property of IRMOF-3 Grafted with Citral. J. South China Univ. Technol. Nat. Sci. Ed. 2020, 48, 80–86. [Google Scholar]
- Hwang, Y.K.; Chang, J.S.; Park, S.E.; Kim, D.S.; Kwon, Y.U.; Jhung, S.H.; Hwang, J.S.; Park, M.S. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. Angew. Chem.-Int. Ed. 2005, 44, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, A.; Zielinski, M.; Debowski, M. Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis. Environ. Sci. Pollut. Res. 2020, 27, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Cho, S.M.; Ahn, W.S.; Lee, C.H.; Lee, K.H.; Cho, W.S. Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route. Microporous Mesoporous Mater. 2015, 213, 161–168. [Google Scholar] [CrossRef]
- Quan, X.Y.; Sui, S.Y.; Huang, G.l.; Sun, L.X.; Ma, J.J.; Wang, Y.N. Synthesis of Metal Organic Frames and Their Application in Food Packaging. Packag. Eng. 2022, 43, 78–88. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.B.; Choi, A.J.; Oh, J.M. Zingiber officinale Extract (ZOE) Incorporated with Layered Double Hydroxide Hybrid through Reconstruction to Preserve Antioxidant Activity of ZOE against Ultrasound and Microwave Irradiation. Nanomaterials 2019, 9, 1281. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.A.A.; Masoomi, M.Y.; Morsali, A. Morphology-dependent sensing performance of dihydro-tetrazine functionalized MOF toward Al(III). Ultrason. Sonochem. 2018, 41, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Dummann, G.; Quittmann, U.; Groschel, L.; Agar, D.W.; Worz, O.; Morgenschweis, K. The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions. Catal. Today 2003, 79, 433–439. [Google Scholar] [CrossRef]
- Mora, M.F.; Greer, F.; Stockton, A.M.; Bryant, S.; Willis, P.A. Toward Total Automation of Microfluidics for Extraterrestial In Situ Analysis. Anal. Chem. 2011, 83, 8636–8641. [Google Scholar] [CrossRef]
- Jia, M.M.; Feng, Y.; Qiu, J.H.; Yao, J.F. Advances in the synthesis and functionalization of UiO-66 and its applications in membrane separation. Chem. Ind. Eng. Prog. 2018, 37, 3471–3483. [Google Scholar] [CrossRef]
- Faustini, M.; Kim, J.; Jeong, G.Y.; Kim, J.Y.; Moon, H.R.; Ahn, W.S.; Kim, D.P. Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets. J. Am. Chem. Soc. 2013, 135, 14619–14626. [Google Scholar] [CrossRef] [PubMed]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks—Prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- Li, M.Y.; Dinca, M. On the Mechanism of MOF-5 Formation under Cathodic Bias. Chem. Mater. 2015, 27, 3203–3206. [Google Scholar] [CrossRef]
- Wei, J.Z.; Wang, X.L.; Sun, X.J.; Hou, Y.; Zhang, X.; Yang, D.D.; Dong, H.; Zhang, F.M. Rapid and Large-Scale Synthesis of IRMOF-3 by Electrochemistry Method with Enhanced Fluorescence Detection Performance for TNP. Inorg. Chem. 2018, 57, 3818–3824. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Liang, X.J.; Pan, X.; Zhang, S.; Zeng, T.Y.; Chen, L.Y.; Huang, X.W. Research progress on synthesis and performance optimization of isoreticular metal-organic frameworks( IRMOFs). Ind. Catal. 2021, 29, 7–12. [Google Scholar]
- Zhu, M.H.; Wu, X.M.; Niu, B.T.; Guo, H.X.; Zhang, Y. Fluorescence sensing of 2,4,6-trinitrophenol based on hierarchical IRMOF-3 nanosheets fabricated through a simple one-pot reaction. Appl. Organomet. Chem. 2018, 32, e4333. [Google Scholar] [CrossRef]
- Ning, H.Y.; Lu, L.X.; Xu, J.; Lu, L.J.; Pan, L.; Lin, Z.D. Development of sodium alginate-based antioxidant and antibacterial bioactive films added with IRMOF-3/Carvacrol. Carbohydr. Polym. 2022, 292, 119682. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.S.; Liu, J.; Gan, L.L.; Yang, X.M. Employing Cryptococcus-directed carbon dots for differentiating and detecting m-benzenediol and p-benzenediol. Sens. Actuators B Chem. 2019, 301, 127077. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Carlos, L.D.; Silva, A.M.S.; Rocha, J. Near-infrared emitters based on post-synthetic modified Ln3+-IRMOF-3. Chem. Commun. 2013, 49, 5019–5021. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Tai, X.S.; Zhou, X.J.; Xin, C.L.; Yan, Y.M. Anchorage of Au3+ into Modified Isoreticular Metal-Organic Framework-3 as a Heterogeneous Catalyst for the Synthesis of Propargylamines. Sci. Rep. 2017, 7, 12709. [Google Scholar] [CrossRef]
- Tanabe, K.K.; Wang, Z.Q.; Cohen, S.M. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 2008, 130, 8508–8517. [Google Scholar] [CrossRef] [PubMed]
- Garibay, S.J.; Wang, Z.Q.; Tanabe, K.K.; Cohen, S.M. Postsynthetic Modification: A Versatile Approach toward Multifunctional Metal-Organic Frameworks. Inorg. Chem. 2009, 48, 7341–7349. [Google Scholar] [CrossRef] [PubMed]
- Custelcean, R.; Sellin, V.; Moyer, B.A. Sulfate separation by selective crystallization of a urea-functionalized metal-organic framework. Chem. Commun. 2007, 1541–1543. [Google Scholar] [CrossRef]
- Custelcean, R.; Moyer, B.A.; Hay, B.P. A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups. Chem. Commun. 2005, 48, 5971–5973. [Google Scholar] [CrossRef]
- Custelcean, R.; Moyer, B.A.; Bryantsev, V.S.; Hay, B.P. Anion coordination in metal-organic frameworks functionalized with urea hydrogen-bonding groups. Cryst. Growth Des. 2006, 6, 555–563. [Google Scholar] [CrossRef]
- Custelcean, R.; Moyer, B.A. Anion separation with metal-organic frameworks. Eur. J. Inorg. Chem. 2007, 2007, 1321–1340. [Google Scholar] [CrossRef]
- Custelcean, R.; Haverlock, T.J.; Moyer, B.A. Anion separation by selective crystallization of metal-organic frameworks. Inorg. Chem. 2006, 45, 6446–6452. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.G.; Jacobsen, E.N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 2007, 107, 5713–5743. [Google Scholar] [CrossRef] [PubMed]
- Dugan, E.; Wang, Z.Q.; Okamura, M.; Medina, A.; Cohen, S.M. Covalent modification of a metal-organic framework with isocyanates: Probing substrate scope and reactivity. Chem. Commun. 2008, 3366–3368. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.; Jeong, H.-K. Generation of covalently functionalized hierarchical IRMOF-3 by post-synthetic modification. Chem. Eng. J. 2012, 181, 740–745. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Cohen, S.M. Tandem modification of metal-organic frameworks by a postsynthetic approach. Angew. Chem.-Int. Ed. 2008, 47, 4699–4702. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, H.A.; Gee, W.J.; Raithby, P.R.; Teat, S.J.; Mahon, M.F.; Burrows, A.D. Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution. Chem. Eur. J. 2018, 24, 11094–11102. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Organic-inorganic hybridization of isoreticular metal-organic framework-3 with melamine for efficiently reducing the fire risk of epoxy resin. Compos. Part B Eng. 2021, 211, 108606. [Google Scholar] [CrossRef]
- Liu, B.; Jie, S.Y.; Bu, Z.Y.; Li, B.G. A MOF-supported chromium catalyst for ethylene polymerization through post-synthetic modification. J. Mol. Catal. A Chem. 2014, 387, 63–68. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; El-Naggar, M.; Taha, M.; Nabil, S.; Youssef, M.A.; Awwad, N.S.; El Sayed, M.T. Designing a sensitive luminescent probe for organophosphorus insecticides detection based on post-synthetic modification of IRMOF-3. J. Mol. Struct. 2020, 1199, 127000. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Carlos, L.D.; Silva, A.M.S.; Rocha, J. Engineering lanthanide-optical centres in IRMOF-3 by post-synthetic modification. New J. Chem. 2015, 39, 4249–4258. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Carlos, L.D.; Rabu, P.; Santos, S.M.; Silva, A.M.S.; Rocha, J. Designing Near-Infrared and Visible Light Emitters by Postsynthetic Modification of Ln+3-IRMOF-3. Eur. J. Inorg. Chem. 2014, 2014, 5285–5295. [Google Scholar] [CrossRef]
- Liu, B.; Jie, S.Y.; Bu, Z.Y.; Li, B.G. Postsynthetic modification of mixed-linker metal-organic frameworks for ethylene oligomerization. RSC Adv. 2014, 4, 62343–62346. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Tanabe, K.K.; Cohen, S.M. Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorg. Chem. 2009, 48, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Zhao, S.L.; Zhao, K.; Tu, T.X.; Zheng, J.Z.; Chen, J.; Zhou, H.F.; Chen, D.J.; Li, S.X. Porous Fe-N-x/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 2016, 311, 137–143. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, X.Y.; Gong, Y.; Han, N.; Liu, H.D.; Chen, Y.F. MOF-derived hierarchical ZnO/ZnFe2O4 hollow cubes for enhanced acetone gas-sensing performance. RSC Adv. 2017, 7, 34609–34617. [Google Scholar] [CrossRef]
- Rao, Z.; Feng, K.; Tang, B.B.; Wu, P.Y. Surface Decoration of Amino-Functionalized Metal Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2017, 9, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Borousan, F.; Yousefi, F.; Ghaedi, M. Removal of Malachite Green Dye Using IRMOF-3 MWCNT-OH-Pd-NPs as a Novel Adsorbent: Kinetic, Isotherm, and Thermodynamic Studies. J. Chem. Eng. Data 2019, 64, 4801–4814. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Moghadamy, S. Zinc oxide nanorods incorporated magnetic isoreticular metal-organic framework for photodegradation of dyes. J. Mol. Struct. 2022, 1247, 131353. [Google Scholar] [CrossRef]
- Li, D.; Dai, X.P.; Zhang, X.; Zhuo, H.Y.; Jiang, Y.; Yu, Y.B.; Zhang, P.F.; Huang, X.L.; Wang, H. Silver nanoparticles encapsulated by metal-organic-framework give the highest turnover frequencies of 10(5) h(−1) for three component reaction by microwave-assisted heating. J. Catal. 2017, 348, 276–281. [Google Scholar] [CrossRef]
- Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J. Catal. 2020, 387, 39–46. [Google Scholar] [CrossRef]
- Vu, T.V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Radnik, J.; Kragl, U.; Fulda, G.; Janiak, C.; Tuyen, N.D. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Microporous Mesoporous Mater. 2013, 177, 135–142. [Google Scholar] [CrossRef]
- Gascon, J.; Aktay, U.; Hernandez-Alonso, M.D.; van Klink, G.P.M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87. [Google Scholar] [CrossRef]
- Cortese, R.; Duca, D. A DFT study of IRMOF-3 catalysed Knoevenagel condensation. Phys. Chem. Chem. Phys. 2011, 13, 15995–16004. [Google Scholar] [CrossRef] [PubMed]
- Xamena, F.; Cirujano, F.G.; Corma, A. An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous Mesoporous Mater. 2012, 157, 112–117. [Google Scholar] [CrossRef]
- Dai, T.L.; Zhang, Y.M.; Chu, G.; Zhang, J. Preparation and Characterization of IRMOF-3 and Their Catalytic Performances in Knoevenagel Condensation. New Chem. Mater. 2017, 45, 145–147. [Google Scholar]
- Zhou, X.; Zhang, Y.; Yang, X.G.; Zhao, L.Z.; Wang, G.Y. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A Chem. 2012, 361, 12–16. [Google Scholar] [CrossRef]
- Nuri, A.; Vucetic, N.; Smatt, J.H.; Mansoori, Y.; Mikkola, J.P.; Murzin, D.Y. Pd Supported IRMOF-3: Heterogeneous, Efficient and Reusable Catalyst for Heck Reaction. Catal. Lett. 2019, 149, 1941–1951. [Google Scholar] [CrossRef]
- Cheng, J.; Mao, Y.X.; Guo, H.; Qian, L.; Shao, Y.; Yang, W.J.; Park, J.Y. Synergistic and efficient catalysis over Bronsted acidic ionic liquid BSO3HMIm HSO4-modified metal-organic framework (IRMOF-3) for microalgal biodiesel production. Fuel 2022, 322, 124217. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, J.; Li, X.F.; Chu, G.; Tian, M.M.; Qun, C.S. Preparation of Fe3O4@IRMOF-3/Pd and Its Catalytic Performance as a Heterogeneous Multifunctional Catalyst. Chem. J. Chin. Univ. 2016, 37, 573–580. [Google Scholar]
- Zhang, J.N.; Yang, X.H.; Guo, W.J.; Wang, B.; Zhang, Z.H. Magnetic Metal-Organic Framework CoFe2O4@SiO2@IRMOF-3 as an Efficient Catalyst for One-Pot Synthesis of Functionalized Dihydro-2-oxopyrroles. Synlett 2017, 28, 734–740. [Google Scholar] [CrossRef]
- Li, W.G.; Li, G.; Liu, D. Synthesis and application of core-shell magnetic metal-organic framework composites Fe3O4/IRMOF-3. RSC Adv. 2016, 6, 94113–94118. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Y.T.; Chi, J.J.; Yu, Y.R.; Zhao, Y.J.; Luo, Y.; Wang, Y.G. Porous MOF Microneedle Array Patch with Photothermal Responsive Nitric Oxide Delivery for Wound Healing. Adv. Sci. 2022, 9, 2103449. [Google Scholar] [CrossRef] [PubMed]
- Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Rowsell, J.L.C.; Millward, A.R.; Park, K.S.; Yaghi, O.M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Tanabe, K.K.; Cohen, S.M. Tuning Hydrogen Sorption Properties of Metal-Organic Frameworks by Postsynthetic Covalent Modification. Chem. Eur. J. 2010, 16, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Barea, E.; Montoro, C.; Navarro, J.A.R. Toxic gas removal—Metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014, 43, 5419–5430. [Google Scholar] [CrossRef]
- Tian, F.M.; Zhang, X.H.; Chen, Y.L. Amino-functionalized metal-organic framework for adsorption and separation of dichloromethane and trichloromethane. RSC Adv. 2016, 6, 63895–63904. [Google Scholar] [CrossRef]
- Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Fan, H.L.; Tian, Z.; He, E.Y.; Li, Y.; Ju, S.G. Adsorptive removal of sulfur compounds using IRMOF-3 at ambient temperature. Appl. Surf. Sci. 2014, 289, 107–113. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Zhang, X.; Sun, H.; Dai, X.P.; Yang, Y.; Ran, L.; Li, X.S.; Ma, X.Y.; Gao, D.W. Morphology Design of IRMOF-3 Crystal by Coordination Modulation. Cryst. Growth Des. 2014, 14, 5856–5864. [Google Scholar] [CrossRef]
- Altintas, C.; Avci, G.; Daglar, H.; Azar, A.N.V.; Velioglu, S.; Erucar, I.; Keskin, S. Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening. ACS Appl. Mater. Interfaces 2018, 10, 17257–17268. [Google Scholar] [CrossRef]
- Farrusseng, D.; Daniel, C.; Gaudillere, C.; Ravon, U.; Schuurman, Y.; Mirodatos, C.; Dubbeldam, D.; Frost, H.; Snurr, R.Q. Heats of Adsorption for Seven Gases in Three Metal-Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir 2009, 25, 7383–7388. [Google Scholar] [CrossRef] [PubMed]
- Karra, J.R.; Walton, K.S. Molecular Simulations and Experimental Studies of CO2, CO, and N−2 Adsorption in Metal-Organic Frameworks. J. Phys. Chem. C 2010, 114, 15735–15740. [Google Scholar] [CrossRef]
- Ding, S.M.; Dong, Q.L.; Hu, J.W.; Xiao, W.M.; Liu, X.H.; Liao, L.Q.; Zhang, N. Enhanced selective adsorption of CO2 on nitrogen-doped porous carbon monoliths derived from IRMOF-3. Chem. Commun. 2016, 52, 9757–9760. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Kareem, F.A.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Synthesis and characterization of iso-reticular metal-organic Framework-3 (IRMOF-3) for CO2/CH4 adsorption: Impact of post-synthetic aminomethyl propanol (AMP) functionalization. J. Nat. Gas Sci. Eng. 2019, 72, 103014. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, N.N.; Li, H.B.; Wang, Z.; Wang, H.T. IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Sep. Purif. Technol. 2023, 318, 123908. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Jiang, J.Q.; Yan, X.P. Fabrication of Isoreticular Metal-Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Anal. Chem. 2011, 83, 5093–5100. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.Y.; Xu, J.W.; Shang, Y.Z.; Wang, H.; Wang, P.; He, X.T.; Tan, J. Determination of quinolones in environmental water and fish by magnetic metal organic frameworks based magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1651, 462286. [Google Scholar] [CrossRef] [PubMed]
- Kalashgrani, M.Y.; Babapoor, A.; Mousavi, S.M.; Feizpoor, S.; Hashemi, S.A.; Binazadeh, M.; Chiang, W.H.; Lai, C.W. Synthesis of Isoreticular Metal Organic Framework-3 (IRMOF-3) Porous Nanostructure and Its Effect on Naphthalene Adsorption: Optimized by Response Surface Methodology. Separations 2023, 10, 261. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.L.; Feng, R.J.; Wang, J.L.; Cai, T.Z. Preparation of anion exchange membrane by incorporating IRMOF-3 in quaternized chitosan. Polym. Bull. 2021, 78, 3785–3801. [Google Scholar] [CrossRef]
- Cai, M.R.; Qin, L.Y.; Pang, L.N.; Ma, B.R.; Bai, J.; Liu, J.; Dong, X.X.; Yin, X.B.; Ni, J. Amino-functionalized Zn metal organic frameworks as antitumor drug curcumin carriers. New J. Chem. 2020, 44, 17693–17704. [Google Scholar] [CrossRef]
- Yang, B.C. Preparation of Anti-Tumor Drug 5-FU Loaded Folate-Conjugated Porous Metal-Organic Frameworks. Master’s Thesis, Southern Medical University, Guangzhou, China, 2012. [Google Scholar]
- Li, L. RGD Peptide Modified Preparation and Drug Loading Norcantharidin Nanoparticles of Metal Organic Framework IRMOF-3 Pharmacokinetic Study. Master’s Thesis, Heilongjiang University of Chinese Medicine, Harbin, China, 2015. [Google Scholar]
- Xu, T. Active Target Study on RGD Peptide Mediated Nano Metal Organic Framework IRMOF-3 Loading Cantharidin. Ph.D. Thesis, Heilongjiang University of Chinese Medicine, Harbin, China, 2015. [Google Scholar]
- Zhang, Y.H. The Preparation and Targeting Property Preliminary Research on RGD Modified Nano Metal Organic Frameworks IRMOF-3. Master’s Thesis, Heilongjiang University of Chinese Medicine, Harbin, China, 2015. [Google Scholar]
- Sahu, S.K.; Maiti, S.; Pramanik, A.; Ghosh, S.K.; Pramanik, P. Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydr. Polym. 2012, 87, 2593–2604. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Targeted Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 16573–16583. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016, 45, 2963–2973. [Google Scholar] [CrossRef]
- Sanaei-Rad, S.; Ghasemzadeh, M.A.; Aghaei, S.S. Synthesis and structure elucidation of ZnFe2O4/IRMOF-3/GO for the drug delivery of tetracycline and evaluation of their antibacterial activities. J. Organomet. Chem. 2022, 960, 122221. [Google Scholar] [CrossRef]
- Mozaffari, F.; Razavian, S.M.H.; Ghasemzadeh, M.A. Encapsulation of Allopurinol in GO/CuFe2O4/IR MOF-3 Nanocomposite and In Vivo Evaluation of Its Efficiency. J. Pharm. Innov. 2023, 18, 149–163. [Google Scholar] [CrossRef]
- Li, X.Y.; Guan, Q.X.; Shang, Y.Z.; Wang, Y.H.; Lv, S.W.; Yang, Z.X.; Wang, R.; Feng, Y.F.; Li, W.N.; Li, Y.J. Metal-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to treat liver cancer. World J. Gastroenterol. 2021, 27, 4208–4220. [Google Scholar] [CrossRef]
- Wu, Y.P.; Luo, Y.G.; Zhou, B.; Mei, L.; Wang, Q.; Zhang, B. Porous metal-organic framework (MOF) Carrier for incorporation of volatile antimicrobial essential oil. Food Control 2019, 98, 174–178. [Google Scholar] [CrossRef]
- He, C.C.; Yu, H.H.; Sun, J.; Zhou, C.; Li, X.; Su, Z.M.; Liu, F.B.; Khakhinov, V. Luminescent composites by in-suit encapsulating dye in IRMOF-3 for ratiometric temperature sensing and tunable white light emission. Dye. Pigment. 2022, 198, 110000. [Google Scholar] [CrossRef]
- Liu, X.M.; Xu, Y.H.; Jiang, D.L. Conjugated Microporous Polymers as Molecular Sensing Devices: Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing. J. Am. Chem. Soc. 2012, 134, 8738–8741. [Google Scholar] [CrossRef]
- Wang, M.; Guo, L.; Cao, D.P. Metal-organic framework as luminescence turn-on sensor for selective detection of metal ions: Absorbance caused enhancement mechanism. Sens. Actuators B Chem. 2018, 256, 839–845. [Google Scholar] [CrossRef]
- Wang, S.H.; Li, P.F.; Wang, Z.R.; Zhang, N. Postsynthetic Covalent Modification of IRMOF-3 and Its Luminescence Properties. J. Instrum. Anal. 2013, 32, 772–775. [Google Scholar]
- Wang, M.; Guo, L.; Cao, D.P. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect. Anal. Chem. 2018, 90, 3608–3614. [Google Scholar] [CrossRef]
- Senthil, R.A.; Selvi, A.; Arunachalam, P.; Amudha, L.S.; Madhavan, J.; Al-Mayouf, A.M. A sensitive electrochemical detection of hydroquinone using newly synthesized alpha-Fe2O3-graphene oxide nanocomposite as an electrode material. J. Mater. Sci.-Mater. Electron. 2017, 28, 10081–10091. [Google Scholar] [CrossRef]
- Nsanzamahoro, S.; Zhang, Y.; Wang, W.F.; Ding, Y.Z.; Shi, Y.P.; Yang, J.L. Fluorescence “turn-on” of silicon-containing nanoparticles for the determination of resorcinol. Microchim. Acta 2021, 188, 46. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yu, Q.Y.; Li, Z.; Huang, Z.Z.; Jia, Q. Rhodamine B functionalized luminescent metal-organic frameworks for ratiometric fluorescence sensing of hydroquinone. J. Mater. Chem. B 2022, 10, 8295–8301. [Google Scholar] [CrossRef]
- Devi, S.; Shaswat, S.; Kumar, V.; Sachdev, A.; Gopinath, P.; Tyagi, S. Nitrogen-doped carbon quantum dots conjugated isoreticular metal-organic framework-3 particles based luminescent probe for selective sensing of trinitrotoluene explosive. Microchim. Acta 2020, 187, 536. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Bhardwaj, S.K.; Mehta, J.; Nayak, M.K.; Deep, A. Bacteriophage conjugated IRMOF-3 as a novel opto-sensor for S. arlettae. New J. Chem. 2016, 40, 8068–8073. [Google Scholar] [CrossRef]
- Cui, Y.J.; Zhu, F.L.; Chen, B.L.; Qian, G.D. Metal-organic frameworks for luminescence thermometry. Chem. Commun. 2015, 51, 7420–7431. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, H.; Lu, L. Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications. Polymers 2024, 16, 2134. https://doi.org/10.3390/polym16152134
Ning H, Lu L. Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications. Polymers. 2024; 16(15):2134. https://doi.org/10.3390/polym16152134
Chicago/Turabian StyleNing, Haoyue, and Lixin Lu. 2024. "Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications" Polymers 16, no. 15: 2134. https://doi.org/10.3390/polym16152134
APA StyleNing, H., & Lu, L. (2024). Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications. Polymers, 16(15), 2134. https://doi.org/10.3390/polym16152134