Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparations of Sisal Nanofibers
2.3. Preparation of Thermoplastic Starch Nanocomposite Films with Sisal Nanofibers
2.4. Chemical Characterization of the Sisal Fibers
2.5. Film Thickness
2.6. Scanning Electron Microscopy (SEM)
2.7. Transmission Electron Microscopy (TEM)
2.8. X-ray Diffraction (XRD)
2.9. Mechanical Tensile Test
3. Results and Discussion
3.1. Chemical Analysis of Sisal Fibers
Fiber | CELb* (%) | HCb* (%) | LIGb* (%) | CELa* (%) | HCb* (%) | LIGb* (%) | Ref |
---|---|---|---|---|---|---|---|
Sisal fiber (NaOH-5% w/v for 60 min) | 54 | 25 | 13 | 78 | 4 | 9 | [28] |
Sisal fiber | 65 | 12 | 9.9 | - | - | - | [29] |
Sisal fiber (NaOH-5% w/v for 60 min) | 63.8 | 15.2 | 8.7 | 69.3 | 11.8 | 2.7 | [26] |
Borassus fruit fiber (NaOH-5% w/v for 30 min) | 68.94 | 14.03 | 5.37 | 82.85 | 3.02 | 5.02 | [27] |
Symphirema involucratum stem fiber (NaOH-5% w/v for 60 min) | 57.32 | 12.47 | 13.85 | 68.69 | 7.46 | 7.54 | [31] |
Thespesia populnea bark fiber (NaOH-5% w/v for 60 min) | 70.27 | 12.64 | 16.34 | 76.42 | 9.59 | 12.78 | [32] |
Areca palm leaf stalk fiber (NaOH-5% w/v for 30 min) | 57.49 | 18.34 | 7.26 | 68.54 | 6.13 | 5.87 | [33] |
3.2. Effects of Alkaline Treatment and the Scanning Electron Microscopy of Sisal Fibers
3.3. SEM of TPS
3.4. Suspension and TEM of Sisal Fibers
3.5. XRD
3.6. Film Thickness
3.7. Tensile Stress Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez-Caturla, J.; Ivorra-Martinez, J.; Fenollar, O.; Balart, R.; Garcia-Garcia, D.; Dominici, F.; Puglia, D.; Torre, L. Development of Starch-Rich Thermoplastic Polymers Based on Mango Kernel Flour and Different Plasticizers. Int. J. Biol. Macromol. 2024, 264, 130773. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Z.; Ren, J.; Lin, X.; Zhao, J.; Jiang, X.; Chen, Y. Molecular Dynamics Simulation and Properties of Thermoplastic Starch—Effect of Water Content on Starch Plasticization. Polymer 2024, 290, 126571. [Google Scholar] [CrossRef]
- Yang, N.; Zou, F.; Tao, H.; Guo, L.; Cui, B.; Fang, Y.; Lu, L.; Wu, Z.; Yuan, C.; Zhao, M.; et al. Effects of Primary, Secondary and Tertiary Structures on Functional Properties of Thermoplastic Starch Biopolymer Blend Films. Int. J. Biol. Macromol. 2023, 236, 124006. [Google Scholar] [CrossRef] [PubMed]
- Bekchanov, D.; Mukhamediev, M.; Yarmanov, S.; Lieberzeit, P.; Mujahid, A. Functionalizing Natural Polymers to Develop Green Adsorbents for Wastewater Treatment Applications. Carbohydr. Polym. 2024, 323, 121397. [Google Scholar] [CrossRef] [PubMed]
- Mysore, T.H.M.; Patil, A.Y.; Raju, G.U.; Banapurmath, N.R.; Bhovi, P.M.; Afzal, A.; Alamri, S.; Saleel, C.A. Investigation of Mechanical and Physical Properties of Big Sheep Horn as an Alternative Biomaterial for Structural Applications. Materials 2021, 14, 4039. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tiwari, A.; Chaudhari, C.V.; Bhardwaj, Y.K. Low Cost Highly Efficient Natural Polymer-Based Radiation Grafted Adsorbent-I: Synthesis and Characterization. Radiat. Phys. Chem. 2021, 182, 109377. [Google Scholar] [CrossRef]
- Tian, Y.; Lei, Q.; Yang, F.; Xie, J.; Chen, C. Development of Cinnamon Essential Oil-Loaded PBAT/Thermoplastic Starch Active Packaging Films with Different Release Behavior and Antimicrobial Activity. Int. J. Biol. Macromol. 2024, 263, 130048. [Google Scholar] [CrossRef] [PubMed]
- Alves, Z.; Ferreira, N.M.; Ferreira, P.; Nunes, C. Design of Heat Sealable Starch-Chitosan Bioplastics Reinforced with Reduced Graphene Oxide for Active Food Packaging. Carbohydr. Polym. 2022, 291, 119517. [Google Scholar] [CrossRef] [PubMed]
- Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Cellulose Nanofibrils Reinforced PBAT/TPS Blends: Mechanical and Rheological Properties. Int. J. Biol. Macromol. 2021, 183, 267–275. [Google Scholar] [CrossRef] [PubMed]
- França, D.; Angelo, L.M.; Souza, C.F.; Faez, R. Biobased Poly(3-Hydroxybutyrate)/Starch/Cellulose Nanofibrils for Nutrients Coatings. ACS Appl. Polym. Mater. 2021, 3, 3227–3237. [Google Scholar] [CrossRef]
- Malherbi, N.M.; Grando, R.C.; Fakhouri, F.M.; Velasco, J.I.; Tormen, L.; da Silva, G.H.R.; Yamashita, F.; Bertan, L.C. Effect of the Addition of Euterpe oleracea Mart. Extract on the Properties of Starch-Based Sachets and the Impact on the Shelf-Life of Olive Oil. Food Chem. 2022, 394, 133503. [Google Scholar] [CrossRef] [PubMed]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta arundinacea) Starch Biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef] [PubMed]
- Mazerolles, T.; Heuzey, M.C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M.A. Development of Co-Continuous Morphology in Blends of Thermoplastic Starch and Low-Density Polyethylene. Carbohydr. Polym. 2019, 206, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Son, D.; Lee, J.; Kim, S.K.; Hong, J.; Jung, H.; Shim, J.K.; Kang, D. Effect of Cellulose Nanofiber-Montmorillonite Hybrid Filler on the Melt Blending of Thermoplastic Starch Composites. Int. J. Biol. Macromol. 2024, 254, 127236. [Google Scholar] [CrossRef]
- H, J.R.; Singh, S.; Janaki Ramulu, P.; Santos, T.F.; Santos, C.M.; M, S.R.; Suyambulingam, I.; Siengchin, S. Effect of Chemical Treatment on Physio-Mechanical Properties of Lignocellulose Natural Fiber Extracted from the Bark of Careya Arborea Tree. Heliyon 2024, 10, e26706. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yi, Y.; Wang, H.; Yang, Y.; Zeng, L.; Tan, Z. Light-Colored Cellulose Nanofibrils Produced from Raw Sisal Fibers without Costly Bleaching. Ind. Crops Prod. 2021, 172, 114009. [Google Scholar] [CrossRef]
- Islam, M.R.; Isa, N.; Yahaya, A.N.; Beg, M.D.H.; Yunus, R.M. Mechanical, Interfacial, and Fracture Characteristics of Poly (Lactic Acid) and Moringa oleifera Fiber Composites. Adv. Polym. Technol. 2018, 37, 1665–1673. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R. The Effects of Wettability, Shear Strength, and Weibull Characteristics of Fiber-Reinforced Poly(Lactic Acid) Composites. J. Polym. Eng. 2016, 36, 489–497. [Google Scholar] [CrossRef]
- Beg, M.; Islam, M.R.; Mamun, A.; Heim, H.-P.; Feldmann, M. Comparative Analysis of the Properties: Microcrystalline Cellulose Fiber Polyamide Composites Filled with Ethylene Copolymer and Olefin Elastomer. Polym. Polym. Compos. 2020, 28, 242–251. [Google Scholar] [CrossRef]
- Chandrasekar, C.M.; Krishnamachari, H.; Farris, S.; Romano, D. Development and Characterization of Starch-Based Bioactive Thermoplastic Packaging Films Derived from Banana Peels. Carbohydr. Polym. Technol. Appl. 2023, 5, 100328. [Google Scholar] [CrossRef]
- Jumaidin, R.; Khiruddin, M.A.A.; Asyul Sutan Saidi, Z.; Salit, M.S.; Ilyas, R.A. Effect of Cogon Grass Fibre on the Thermal, Mechanical and Biodegradation Properties of Thermoplastic Cassava Starch Biocomposite. Int. J. Biol. Macromol. 2020, 146, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.D.H.; Pickering, K.L.; Gauss, C. The Effects of Alkaline Digestion, Bleaching and Ultrasonication Treatment of Fibre on 3D Printed Harakeke Fibre Reinforced Polylactic Acid Composites. Compos. Part Appl. Sci. Manuf. 2023, 166, 107384. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.C.; Melo, P.T.S.; Aouada, F.A.; de Moura, M.R. Influence of Lemon Nanoemulsion in Films Gelatin-Based. Quím. Nova 2018, 41, 1006–1010. [Google Scholar] [CrossRef]
- ASTM D882-02; Standard Test Method for Tensile Properties of Thin Plasting Sheeting. ASTM International: West Conshohocken, PA, USA, 2002.
- de Souza Castoldi, R.; de Souza, L.M.S.; Souto, F.; Liebscher, M.; Mechtcherine, V.; de Andrade Silva, F. Effect of Alkali Treatment on Physical–Chemical Properties of Sisal Fibers and Adhesion towards Cement-Based Matrices. Constr. Build. Mater. 2022, 345, 128363. [Google Scholar] [CrossRef]
- Boopathi, L.; Sampath, P.S.; Mylsamy, K. Investigation of Physical, Chemical and Mechanical Properties of Raw and Alkali Treated Borassus Fruit Fiber. Compos. Part B Eng. 2012, 43, 3044–3052. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Teixeira, E.d.M.; Corrêa, A.C.; de Campos, A.; Marconcini, J.M.; Mattoso, L.H.C. Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: Efeito do tempo e da temperatura de extração. Polímeros 2011, 21, 280–285. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, F.; Tao, H.; Gao, W.; Guo, L.; Cui, B.; Yuan, C.; Liu, P.; Lu, L.; Wu, Z.; et al. Effects of Different Sources of Cellulose on Mechanical and Barrier Properties of Thermoplastic Sweet Potato Starch Films. Ind. Crops Prod. 2023, 194, 116358. [Google Scholar] [CrossRef]
- Raju, J.S.N.; Depoures, M.V.; Kumaran, P. Comprehensive Characterization of Raw and Alkali (NaOH) Treated Natural Fibers from Symphirema Involucratum Stem. Int. J. Biol. Macromol. 2021, 186, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Characterization of Cellulose Fibers in Thespesia Populnea Barks: Influence of Alkali Treatment. Carbohydr. Polym. 2019, 217, 178–189. [Google Scholar] [CrossRef]
- Shanmugasundaram, N.; Rajendran, I.; Ramkumar, T. Characterization of Untreated and Alkali Treated New Cellulosic Fiber from an Areca Palm Leaf Stalk as Potential Reinforcement in Polymer Composites. Carbohydr. Polym. 2018, 195, 566–575. [Google Scholar] [CrossRef]
- Arsyad, M.; Wardana, I.N.G.; Pratikto; Irawan, Y.S. The Morphology of Coconut Fiber Surface under Chemical Treatment. Matér. Rio Jan. 2015, 20, 169–177. [Google Scholar] [CrossRef]
- Madival, A.S.; Maddasani, S.; Shetty, R.; Doreswamy, D. Influence of Chemical Treatments on the Physical and Mechanical Properties of Furcraea Foetida Fiber for Polymer Reinforcement Applications. J. Nat. Fibers 2023, 20, 2136816. [Google Scholar] [CrossRef]
- Sahu, S.; Sahu, S.B.B.P.J.; Nayak, S.; Mohapatra, J.; Khuntia, S.K.; Malla, C.; Samal, P.; Patra, S.K.; Swain, S. Characterization of Natural Fiber Extracted from Bauhinia Vahlii Bast Subjected to Different Surface Treatments: A Potential Reinforcement in Polymer Composite. J. Nat. Fibers 2023, 20, 2162185. [Google Scholar] [CrossRef]
- Van Khoi, N.; Tung, N.T.; Ha, P.T.T.; Trang, P.T.; Duc, N.T.; Thang, T.V.; Phuong, H.T.; Huong, N.T.; Phuong, N.T.L. Study on Characteristics of Thermoplastic Starch Based on Vietnamese Arrowroot Starch Plasticized by Glycerol. Vietnam J. Chem. 2023, 61, 59–64. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-Intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zheng, D.; Li, M.; Yue, J. Isolation and Characterization of Nanocellulose Crystals via Acid Hydrolysis from Agricultural Waste-Tea Stalk. Int. J. Biol. Macromol. 2020, 163, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.-M.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Hui, D.; Low, C.-Y.; Rahmat, A.R. Extraction of Cellulose Nanocrystals from Plant Sources for Application as Reinforcing Agent in Polymers. Compos. Part B Eng. 2015, 75, 176–200. [Google Scholar] [CrossRef]
- Adel, A.; El-Shafei, A.; Ibrahim, A.; Al-Shemy, M. Extraction of Oxidized Nanocellulose from Date Palm (Phoenix Dactylifera L.) Sheath Fibers: Influence of CI and CII Polymorphs on the Properties of Chitosan/Bionanocomposite Films. Ind. Crops Prod. 2018, 124, 155–165. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-Ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, B.; Bucio, L. Microcrystalline Cellulose (MCC) Analysis and Quantitative Phase Analysis of Ciprofloxacin/MCC Mixtures by Rietveld XRD Refinement with Physically Based Background. Cellulose 2018, 25, 2795–2815. [Google Scholar] [CrossRef]
- Pacaphol, K.; Seraypheap, K.; Aht-Ong, D. Extraction and Silylation of Cellulose Nanofibers from Agricultural Bamboo Leaf Waste for Hydrophobic Coating on Paper. J. Nat. Fibers 2023, 20, 2178581. [Google Scholar] [CrossRef]
- Marinas, I.C.; Gradisteanu Pircalabioru, G.; Oprea, E.; Geana, E.-I.; Zgura, I.; Romanitan, C.; Matei, E.; Angheloiu, M.; Brincoveanu, O.; Georgescu, M.; et al. Physico-Chemical and pro-Wound Healing Properties of Microporous Cellulosic Sponge from Gleditsia Triacanthos Pods Functionalized with Phytolacca Americana Fruit Extract. Cellulose 2023, 30, 10313–10339. [Google Scholar] [CrossRef]
- Marques, M.d.F.V.; Melo, R.P.; Araujo, R.d.S.; Lunz, J.d.N.; Aguiar, V.d.O. Improvement of Mechanical Properties of Natural Fiber–Polypropylene Composites Using Successive Alkaline Treatments. J. Appl. Polym. Sci. 2015, 132, 41710. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of Raw and Alkali Treated New Natural Cellulosic Fiber from Coccinia grandis L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Saravanakumar, S.S.; Sanjay, M.R.; Jawaid, M.; Siengchin, S. Physico-Chemical and Thermal Properties of Untreated and Treated Acacia planifrons Bark Fibers for Composite Reinforcement. Mater. Lett. 2019, 240, 221–224. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K. Characterization of Alkali-Treated Jute Fibers for Physical and Mechanical Properties. J. Appl. Polym. Sci. 2001, 80, 1013–1020. [Google Scholar] [CrossRef]
- Hossen, M.d.T.; Kundu, C.K.; Pranto, B.R.R.; Rahi, M.d.S.; Chanda, R.; Mollick, S.; Siddique, A.B.; Begum, H.A. Synthesis, Characterization, and Cytotoxicity Studies of Nanocellulose Extracted from Okra (Abelmoschus esculentus) Fiber. Heliyon 2024, 10, e25270. [Google Scholar] [CrossRef] [PubMed]
- Galdeano, M.C.; Wilhelm, A.E.; Mali, S.; Grossmann, M.V.E. Influence of Thickness on Properties of Plasticized Oat Starch Films. Braz. Arch. Biol. Technol. 2013, 56, 637–644. [Google Scholar] [CrossRef]
- Polymers|Free Full-Text|Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites. Available online: https://www.mdpi.com/2073-4360/15/20/4141 (accessed on 15 April 2024).
- Xie, F.; Flanagan, B.M.; Li, M.; Sangwan, P.; Truss, R.W.; Halley, P.J.; Strounina, E.V.; Whittaker, A.K.; Gidley, M.J.; Dean, K.M.; et al. Characteristics of Starch-Based Films Plasticised by Glycerol and by the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate: A Comparative Study. Carbohydr. Polym. 2014, 111, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, Y.; Zhang, Z.; Ye, C.; Chen, Y.; Wei, P.; Wang, Y.; Xia, Y. Thermoplastic Starch Plasticized by Polymeric Ionic Liquid. Eur. Polym. J. 2021, 148, 110367. [Google Scholar] [CrossRef]
- Orue, A.; Corcuera, M.A.; Peña, C.; Eceiza, A.; Arbelaiz, A. Bionanocomposites Based on Thermoplastic Starch and Cellulose Nanofibers. J. Thermoplast. Compos. Mater. 2016, 29, 817–832. [Google Scholar] [CrossRef]
- Tambrallimath, V.; Keshavamurthy, R.; Bavan, S.D.; Patil, A.Y.; Yunus Khan, T.M.; Badruddin, I.A.; Kamangar, S. Mechanical Properties of PC-ABS-Based Graphene-Reinforced Polymer Nanocomposites Fabricated by FDM Process. Polymers 2021, 13, 2951. [Google Scholar] [CrossRef] [PubMed]
- Nimbagal, V.; Banapurmath, N.R.; Sajjan, A.M.; Patil, A.Y.; Ganachari, S.V. Studies on Hybrid Bio-Nanocomposites for Structural Applications. J. Mater. Eng. Perform. 2021, 30, 6461–6480. [Google Scholar] [CrossRef]
Film Code | Film Specification |
---|---|
18%GWF | 18% glycerol without nanofiber |
28%GWF | 28% glycerol without nanofiber |
36%GWF | 36% glycerol without nanofiber |
18%G1%NF | 18% glycerol with 1% nanofiber |
18%G3%NF | 18% glycerol with 3% nanofiber |
28%G1%NF | 28% glycerol with 1% nanofiber |
28%G3%NF | 28% glycerol with 3% nanofiber |
36%G1%NF | 36% glycerol with 1% nanofiber |
36%G3%NF | 36% glycerol with 3% nanofiber |
Sample | α-Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
Crude Fiber | 66.39 ± 0.36 | 26.95 ± 0.79 | 2.19 ± 0.58 |
Treated Fibers | 83.72 ± 0.05 | 11.41 ± 0.88 | 0.59 ± 0.11 |
Thermoplastic Starch | Average Thickness (mm) |
---|---|
18%GWF | 0.111 ± 0.01 |
18%G1%NF | 0.140 ± 0.01 |
18%G3%NF | 0.169 ± 0.02 |
28%GWF | 0.142 ± 0.01 |
28%G1%NF | 0.182 ± 0.03 |
28%G3%NF | 0.185 ± 0.01 |
36%GWF | 0.145 ± 0.004 |
36%G1%NF | 0.182 ± 0.01 |
36%G3%NF | 0.187 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vilhena, M.B.; Paula, M.V.d.S.; de Oliveira, R.C.; Estumano, D.C.; Viegas, B.M.; Rodrigues, E.C.; Macêdo, E.N.; Souza, J.A.d.S.; Cunha, E.J.d.S. Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films. Polymers 2024, 16, 1947. https://doi.org/10.3390/polym16131947
de Vilhena MB, Paula MVdS, de Oliveira RC, Estumano DC, Viegas BM, Rodrigues EC, Macêdo EN, Souza JAdS, Cunha EJdS. Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films. Polymers. 2024; 16(13):1947. https://doi.org/10.3390/polym16131947
Chicago/Turabian Stylede Vilhena, Mailson Batista, Marcos Vinícius da Silva Paula, Raul Costa de Oliveira, Diego Cardoso Estumano, Bruno Marques Viegas, Emerson Cardoso Rodrigues, Emanuel Negrão Macêdo, José Antônio da Silva Souza, and Edinaldo José de Sousa Cunha. 2024. "Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films" Polymers 16, no. 13: 1947. https://doi.org/10.3390/polym16131947
APA Stylede Vilhena, M. B., Paula, M. V. d. S., de Oliveira, R. C., Estumano, D. C., Viegas, B. M., Rodrigues, E. C., Macêdo, E. N., Souza, J. A. d. S., & Cunha, E. J. d. S. (2024). Effect of Glycerol and Sisal Nanofiber Content on the Tensile Properties of Corn Starch/Sisal Nanofiber Films. Polymers, 16(13), 1947. https://doi.org/10.3390/polym16131947