Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6%
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results
3.1. Device Performance
3.2. Device Physics
3.3. Film Morphology
3.4. Large-Area Organic Solar Modules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Zhang, M.; Xu, J.Q.; Li, C.; Yan, J.; Zhou, G.Q.; Zhong, W.K.; Hao, T.Y.; Song, J.L.; Xue, X.N.; et al. Single-Junction Organic Solar Cells with over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-Roll Fabrication of Polymer Solar Cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef]
- Fan, B.B.; Du, X.Y.; Liu, F.; Zhong, W.K.; Ying, L.; Xie, R.H.; Tang, X.F.; An, K.; Xin, J.M.; Li, N.; et al. Fine-Tuning of the Chemical Structure of Photoactive Materials for Highly Efficient Organic Photovoltaics. Nat. Energy 2018, 3, 1051–1058. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.M.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and Waterproof Elastomer-Coated Organic Photovoltaics for Washable Electronic Textile Applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Wang, G.D.; Zhang, J.Q.; Yang, C.; Wang, Y.H.; Xing, Y.; Adil, M.A.; Yang, Y.; Tian, L.J.; Su, M.; Shang, W.Q.; et al. Synergistic Optimization Enables Large-Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small-Area Rigid Devices. Adv. Mater. 2020, 32, 2005153. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.Q.; Zhou, L.Y.; Zhang, G.C.; Yip, H.L.; Lau, T.K.; Lu, X.H.; Zhu, C.; Peng, H.J.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Brabec, C.J.; Distler, A.; Du, X.Y.; Egelhaaf, H.J.; Hauch, J.; Heumueller, T.; Li, N. Material Strategies to Accelerate OPV Technology Toward a GW Technology. Adv. Energy Mater. 2020, 10, 2001864. [Google Scholar] [CrossRef]
- Distler, A.; Brabec, C.J.; Egelhaaf, H.J. Organic Photovoltaic Modules with New World Record Efficiencies. Prog. Photovolt. 2021, 29, 24–31. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhang, R.; Chen, X.B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.J.; Xu, G.Y.; Oh, J.; et al. A Guest-Assisted Molecular-Organization Approach for >17% Efficiency Organic Solar Cells Using Environmentally Friendly Solvents. Nat. Energy 2021, 6, 1045–1053. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.; Wang, T.; Guo, J.; Liu, C. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Adv. Mater. 2022, 34, 2110147. [Google Scholar] [CrossRef]
- Xu, X.P.; Jing, W.W.; Meng, H.F.; Guo, Y.Y.; Yu, L.Y.; Li, R.P.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, 2208997. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; He, C.L.; Chen, T.Y.; Zheng, J.L.; Sun, R.; Fang, J.; Chen, Y.Y.; Pan, Y.W.; Yan, K.R.; Li, C.Z.; et al. Refined Molecular Microstructure and Optimized Carrier Management of Multicomponent Organic Photovoltaics toward 19.3% Certified Efficiency. Energy Environ. Sci. 2023, 16, 2262–2273. [Google Scholar] [CrossRef]
- Bi, P.Q.; Wang, J.Q.; Cui, Y.; Zhang, J.Q.; Zhang, T.; Chen, Z.H.; Qiao, J.W.; Dai, J.B.; Zhang, S.Q.; Hao, X.T.; et al. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. Adv. Mater. 2023, 35, 2210865. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, L.; Wang, W.; Qin, F.; Xie, C.; Hu, L.; Zhou, Y. 10 cm2 Nonfullerene Solar Cells with Efficiency over 10% Using HxMoO3-Assisted Growth of Silver Electrodes with a Low Threshold Thickness of 4 nm. J. Mater. Chem. A 2020, 8, 69–76. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.H.; Zhou, G.Q.; Gu, E.; Xia, R.X.; Yan, B.Y.; Yao, J.Z.; Zhu, H.M.; Lu, X.H.; Yip, H.L.; et al. High-Performance See-Through Power Windows. Energy Environ. Sci. 2022, 15, 2629–2637. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.B.; Luo, Z.H.; Yang, W.Y.; Hu, Z.C.; Guo, J.; et al. A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule 2020, 4, 407–419. [Google Scholar] [CrossRef]
- Zhou, J.; Li, D.; Wang, L.; Zhang, X.; Deng, N.; Guo, C.; Chen, C.; Gan, Z.; Liu, C.; Sun, W. Bicontinuous Donor and Acceptor Fibril Networks Enable 19.2% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Interdiscip. Mater. 2023, 2, 866–875. [Google Scholar] [CrossRef]
- Jiao, X.C.; Ye, L.; Ade, H. Quantitative Morphology-Performance Correlations in Organic Solar Cells: Insights from Soft X-ray Scattering. Adv. Energy Mater. 2017, 7, 1700084. [Google Scholar] [CrossRef]
- Xian, K.; Liu, Y.; Liu, J.; Yu, J.; Xing, Y.; Peng, Z.; Zhou, K.; Gao, M.; Zhao, W.; Lu, G. Delicate Crystallinity Control Enables High-Efficiency P3HT Organic Photovoltaic Cells. J. Mater. Chem. A 2022, 10, 3418–3429. [Google Scholar] [CrossRef]
- Kim, H.S.; Rasool, S.; Shin, W.S.; Song, C.E.; Hwang, D.-H. Alkylated Indacenodithiophene-Based Non-fullerene Acceptors with Extended π-Conjugation for High-Performance Large-Area Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 50638–50647. [Google Scholar] [CrossRef]
- Sun, R.; Wang, T.; Yang, X.; Wu, Y.; Wang, Y.; Wu, Q.; Zhang, M.; Brabec, C.J.; Li, Y.; Min, J. High-Speed Sequential Deposition of Photoactive Layers for Organic Solar Cell Manufacturing. Nat. Energy 2022, 7, 1087–1099. [Google Scholar] [CrossRef]
- Liao, C.Y.; Chen, Y.; Lee, C.C.; Wang, G.; Teng, N.W.; Lee, C.H.; Li, W.L.; Chen, Y.K.; Li, C.H.; Ho, H.L.; et al. Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. Joule 2020, 4, 189–206. [Google Scholar] [CrossRef]
- Guan, M.; Tao, W.; Xu, L.; Qin, Y.; Zhang, J.; Tan, S.; Huang, M.; Zhao, B. An Asymmetric Small-Molecule Donor Enables over 18% Efficiency in Ternary Organic Solar Cells. J. Mater. Chem. A 2022, 10, 9746–9752. [Google Scholar] [CrossRef]
- Cai, Y.H.; Huo, L.J.; Sun, Y.M. Recent Advances in Wide-Bandgap Photovoltaic Polymers. Adv. Mater. 2017, 29, 1605437. [Google Scholar] [CrossRef] [PubMed]
- Grott, S.; Kotobi, A.; Reb, L.K.; Weindl, C.L.; Guo, R.; Yin, S.; Wienhold, K.S.; Chen, W.; Ameri, T.; Schwartzkopf, M. Solvent Tuning of the Active Layer Morphology of Non-Fullerene Based Organic Solar Cells. Sol. RRL 2022, 6, 2101084. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X.; et al. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583. [Google Scholar] [CrossRef]
- Fan, J.Y.; Liu, Z.X.; Rao, J.; Yan, K.; Chen, Z.; Ran, Y.; Yan, B.; Yao, J.; Lu, G.; Zhu, H.; et al. High-Performance Organic Solar Modules via Bilayer-Merged-Annealing Assisted Blade Coating. Adv. Mater. 2022, 34, 2110569. [Google Scholar] [CrossRef]
- Jeong, S.; Park, B.; Hong, S.; Kim, S.; Kim, J.; Kwon, S.; Lee, J.H.; Lee, M.S.; Park, J.C.; Kang, H.; et al. Large-Area Nonfullerene Organic Solar Cell Modules Fabricated by a Temperature-Independent Printing Method. ACS Appl. Mater. Interfaces 2020, 12, 41877–41885. [Google Scholar] [CrossRef]
- Zhan, L.; Yin, S.; Li, Y.; Li, S.; Chen, T.; Sun, R.; Min, J.; Zhou, G.; Zhu, H.; Chen, Y.; et al. Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency, Thick-Film, and Large-Area Organic Photovoltaics. Adv. Mater. 2022, 34, 2206269. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Park, S.; Park, S.H.; Nah, S.; Lee, S.; Lee, J.-W.; Ahn, H.; Yu, H.; Shin, E.-Y.; Kim, B.J.; et al. High-Performance Scalable Organic Photovoltaics with High Thickness Tolerance from 1 cm2 to above 50 cm2. Joule 2022, 6, 2406–2422. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, L.; Liang, H.; Li, M.; Chen, H.; Jiang, C.; Zhang, K.; Huang, F.; Yao, Z.; Li, C. Tandem Oganic Solar Cells with 18.67% Efficiency via Careful Subcell Design and Selection. J. Mater. Chem. A 2022, 10, 11238–11245. [Google Scholar] [CrossRef]
- Jiang, X.; Chotard, P.; Luo, K.; Eckmann, F.; Tu, S.; Reus, M.A.; Yin, S.; Reitenbach, J.; Weindl, C.L.; Schwartzkopf, M. Revealing Donor–Acceptor Interaction on the Printed Active Layer Morphology and the Formation Kinetics for Nonfullerene Organic Solar Cells at Ambient Conditions. Adv. Energy Mater. 2022, 12, 2103977. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, M.; Wang, S.; Zhang, B.; Mao, P.; Woo, H.Y.; Zhang, F.; Wang, J.L.; An, Q. Hot-Casting Strategy Empowers High-Boiling Solvent-Processed Organic Solar Cells with over 18.5% Efficiency. Adv. Mater. 2024, 36, 2305356. [Google Scholar] [CrossRef]
- van Franeker, J.J.; Kouijzer, S.; Lou, X.; Turbiez, M.; Wienk, M.M.; Janssen, R.A. Depositing Fullerenes in Swollen Polymer Layers via Sequential Processing of Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1500464. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Huang, J.; Xia, X.; Cao, J.; Zhao, G.; Fong, P.W.; Zhu, Y.; Yan, F.; Yang, Y. Graded Bulk-Heterojunction Enables 17% Binary Organic Solar Cells via Nonhalogenated Open Air Coating. Nat. Commun. 2021, 12, 4815. [Google Scholar] [CrossRef] [PubMed]
- Spooner, E.L.; Cassella, E.J.; Smith, J.A.; Catley, T.E.; Burholt, S.; Lidzey, D.G. Air-Knife-Assisted Spray Coating of Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 39625–39635. [Google Scholar] [CrossRef]
- Ma, X.; Ran, G.; Li, H.; Liu, Y.; Cui, X.; Lu, H.; Yin, Z.; Li, D.; Zhang, H.; Liu, W. Modulating the Growth of Nonfullerene Acceptors toward Efficient and Stable Organic Solar Cells Processed by High-Boiling-Point Solvents. Adv. Energy Mater. 2023, 13, 2302554. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, C.; Zhan, X. Morphology Control in Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1703147. [Google Scholar] [CrossRef]
- Peña, T.A.D.; Ma, R.; Xing, Z.; Wei, Q.; Khan, J.I.; Young, R.M.; Hai, Y.; Garcia, S.A.; Zou, X.; Jin, Z. Interface Property–Functionality Interplay Suppresses Bimolecular Recombination Facilitating above 18% Efficiency Organic Solar Cells Embracing Simplistic Fabrication. Energy Environ. Sci. 2023, 16, 3416–3429. [Google Scholar] [CrossRef]
- Feng, W.; Wu, S.; Chen, H.; Meng, L.; Huang, F.; Liang, H.; Zhang, J.; Wei, Z.; Wan, X.; Li, C. Tuning Morphology of Active Layer by using a Wide Bandgap Oligomer-like Donor Enables Organic Solar Cells with over 18% Efficiency. Adv. Energy Mater. 2022, 12, 2104060. [Google Scholar] [CrossRef]
- Dong, S.; Jia, T.; Zhang, K.; Jing, J.; Huang, F. Single-Component Non-halogen Solvent Processed High-Performance Organic Solar Cell Module with Efficiency over 14%. Joule 2020, 4, 2004–2016. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.Q.; Bi, P.Q.; Ren, J.Z.; Wang, Y.F.; Yang, Y.; Liu, X.Y.; Zhang, S.Q.; Hou, J.H. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, C.; Qiu, B.; Liu, W.; So, S.K.; Mainville, M.; Leclerc, M.; Shoaee, S.; Neher, D.; Zou, Y. Effects of Energetic Disorder in Bulk Heterojunction Organic Solar Cells. Energy Environ. Sci. 2022, 15, 2806–2818. [Google Scholar] [CrossRef]
- Lv, J.; Tang, H.; Huang, J.; Yan, C.; Liu, K.; Yang, Q.; Hu, D.; Singh, R.; Lee, J.; Lu, S. Additive-Induced Miscibility Regulation and Hierarchical Morphology Enable 17.5% Binary Organic Solar Cells. Energy Environ. Sci. 2021, 14, 3044–3052. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-Performance Organic Bulk-Heterojunction Solar Cells Based on Multiple-Donor or Multiple-Acceptor Components. Adv. Mater. 2018, 30, 1705706. [Google Scholar] [CrossRef]
- Huang, W.; Jiang, Z.; Fukuda, K.; Jiao, X.; McNeill, C.R.; Yokota, T.; Someya, T. Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule 2020, 4, 128–141. [Google Scholar] [CrossRef]
Treatment | VOC (V) | JSC (mA/cm2) | JSC (EQE) (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|
w/o | 0.839 (0.833 ± 0.006) | 26.7 (26.5 ± 0.4) | 25.6 | 76.8 (75.1 ± 2.1) | 17.2 (16.7 ± 0.5) |
w/ | 0.848 (0.846 ± 0.003) | 27.1 (26.9 ± 0.5) | 26.1 | 78.1 (77.2 ± 1.2) | 17.9 (17.6 ± 0.3) |
Treatment | Jsat (mA/cm2) | Jph* (mA/cm2) | Jph# (mA/cm2) | ηdiss (%) | ηcoll (%) |
---|---|---|---|---|---|
w/o | 27.31 | 26.71 | 23.73 | 97.8 | 86.8 |
w/ | 27.67 | 27.17 | 24.57 | 98.2 | 88.8 |
Treatment | VOC (V) | ISC (mA) | FF (%) | PCE (%) | Active Area (cm2) |
---|---|---|---|---|---|
w/o | 4.99 | 51.4 | 68.2 | 14.5 | 12 |
w/ | 5.01 | 52.2 | 71.6 | 15.6 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Ji, Y.; Zhang, D.; Liu, X.; Xia, Z.; Liu, X.; Yang, X.; Huang, W. Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6%. Polymers 2024, 16, 1590. https://doi.org/10.3390/polym16111590
Cheng Y, Ji Y, Zhang D, Liu X, Xia Z, Liu X, Yang X, Huang W. Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6%. Polymers. 2024; 16(11):1590. https://doi.org/10.3390/polym16111590
Chicago/Turabian StyleCheng, Yingying, Yitong Ji, Dongyang Zhang, Xiangda Liu, Zezhou Xia, Xiujun Liu, Xueyuan Yang, and Wenchao Huang. 2024. "Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6%" Polymers 16, no. 11: 1590. https://doi.org/10.3390/polym16111590
APA StyleCheng, Y., Ji, Y., Zhang, D., Liu, X., Xia, Z., Liu, X., Yang, X., & Huang, W. (2024). Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6%. Polymers, 16(11), 1590. https://doi.org/10.3390/polym16111590