Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Silica Colloidal Crystal Template
2.3. Preparation of Boronate Affinity 3DOM
2.4. Characterization
2.5. Adsorption Experiment
2.6. Adsorption Kinetics
2.7. Adsorption Ability for Glycoproteins from Eggs
3. Results and Discussion
3.1. Preparation of Boronate Affinity 3DOM Material
3.2. Characterization of SCCB and Boronate Affinity 3DOM Material
3.2.1. Morphology Characterization
3.2.2. FT-IR Spectrum
3.2.3. Thermogravimetric Analysis
3.2.4. X-ray Photoelectron Spectroscopy
3.2.5. Pore Structure Analysis
3.2.6. Specific Surface Area
3.3. The Effecst of pH on the Adsorption Properties of the Boronate Affinity 3DOM Material
3.4. The Adsorption of OVA by the Boronate Affinity 3DOM Material
3.4.1. Adsorption Dynamics
3.4.2. Adsorption Kinetics
3.5. The Adsorption of Adenosine by the Boronate Affinity 3DOM Material
3.6. The Selectivity of the Boronate Affinity 3DOM Material
3.7. Application: Separation and Enrichment of Glycoproteins from Eggs by Boronate Affinity 3DOM Material
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Soltani, S.; Jouban, A. Biological sample preparation: Attempts on productivity increasing in bioanalysis. Bioanalysis 2014, 6, 1691–1710. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Ma, R.T.; Chen, J.; Shi, Y.P. Synthesis of magnetic molecularly imprinted nanoparticles with multiple recognition sites for the simultaneous and selective capture of two glycoproteins. J. Mater. Chem. B 2018, 6, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Y.; Li, X.; Bie, Z.; Pan, X.; Zhang, Q.; Liu, Z. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J. Chromatogr. A 2015, 1384, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, J.; Sun, N.; Deng, C. One-step functionalization of magnetic nanoparticles with 4-mercaptophenylboronic acid for a highly efficient analysis of N-glycopeptides. Nanoscale 2017, 9, 16024–16029. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, R.W.; Zhao, Y. A General Method for Selective Recognition of Monosaccharides and Oligosaccharides in Water. J. Am. Chem. Soc. 2017, 139, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ye, F.; Wang, H.; Admassu, H.; Feng, Y.; Hua, X.; Yang, R. Phenylboronic Acid Functionalized Adsorbents for Selective and Reversible Adsorption of Lactulose from Syrup Mixtures. J. Agric. Food Chem. 2018, 66, 9269–9281. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Furuta, H.; Naito, T.; Sano, T.; Otsuka, K. Selective adsorption of carbohydrates and glycoproteins via molecularly imprinted hydrogels: Application to visible detection by a boronic acid monomer. Chem. Commun. 2017, 53, 7290–7293. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, H.; Wei, Y. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum. Anal. Chim. Acta 2016, 902, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Okutucu, B.; Vurmaz, D.; Tuncal, A.; Türkcan, C.; Aktaş Uygun, D.; Akgöl, S. Boronate affinity nanoparticles for nucleoside separation. Artif. Cells Nanomed. Biotechnol. 2016, 44, 322–327. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Liu, Z. Boronate affinity materials for separation and molecular recognition: Structure, properties and applications. Chem. Soc. Rev. 2015, 44, 8097–8123. [Google Scholar] [CrossRef]
- Liu, Z.; He, H. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. Acc. Chem. Res. 2017, 50, 2185–2193. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D. Applications of reversible covalent chemistry in analytical sample preparation. Analyst 2012, 137, 5457–5482. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Liu, Z.; Liu, Y.; Dou, P.; Chen, H.Y. Ring-opening polymerization with synergistic co-monomers: Access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions. Angew. Chem. 2009, 48, 6704–6707. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, Y.; Ma, Q.; Guo, L.; Feng, Y.Q. Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst 2009, 134, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Liu, Z.; Dong, M.; Ye, M.; Zou, H. Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J. Chromatogr. A 2009, 1216, 4768–4774. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lin, Z.; He, X.; Chen, L.; Zhang, Y. Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins. J. Chromatogr. A 2011, 1218, 9194–9201. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Lu, R.; Liu, M.; Li, Y.; Li, J.; Wang, L. A facile and general approach for the preparation of boronic acid-functionalized magnetic nanoparticles for the selective enrichment of glycoproteins. Analyst 2019, 144, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Lu, X.; Yuan, Y.; Qian, J.; Zhou, H.; Lu, X.; Shi, J.; Liu, C. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 2011, 32, 1932–1942. [Google Scholar] [CrossRef]
- Süngü, Ç.; Kip, Ç.; Tuncel, A. Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography. J. Sep. Sci. 2019, 42, 1962–1971. [Google Scholar] [CrossRef]
- González-Urbina, L.; Baert, K.; Kolaric, B.; Pérez-Moreno, J.; Clays, K. Linear and nonlinear optical properties of colloidal photonic crystals. Chem. Rev. 2012, 112, 2268–2285. [Google Scholar] [CrossRef]
- Ren, X.H.; Wang, H.Y.; Li, S.; He, X.W.; Li, W.Y.; Zhang, Y.K. Preparation of glycan-oriented imprinted polymer coating Gd-doped silicon nanoparticles for targeting cancer Tn antigens and dual-modal cell imaging via boronate-affinity surface imprinting. Talanta 2021, 223, 121706. [Google Scholar] [CrossRef] [PubMed]
- Senel, S.; Camli, S.T.; Tuncel, M.; Tuncel, A. Nucleotide adsorption–desorption behaviour of boronic acid functionalized uniform-porous particles. J. Chromatogr. B 2002, 769, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Kip, Ç.; Gülüşür, H.; Çelik, E.; Usta, D.D.; Tuncel, A. Isolation of RNA and beta-NAD by phenylboronic acid functionalized, monodisperse-porous silica microspheres as sorbent in batch and microfluidic boronate affinity systems. Colloids Surf. B Biointerfaces 2018, 174, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, Z.; Shao, H.; Zhang, R.; Chen, L.; Yang, X. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020, 145, 7511–7527. [Google Scholar] [CrossRef] [PubMed]
- Sadakane, M.; Sasaki, K.; Nakamura, H.; Yamamoto, T.; Ninomiya, W.; Ueda, W. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: The glass-transition temperature. Langmuir ACS J. Surf. Colloids 2012, 28, 17766–17770. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Feng, Y.; Huang, S.; Wu, Q.; He, J. Preparation of ordered macroporous cinchonine molecularly imprinted polymers and comparative study of their structure and binding properties with traditional bulk molecularly imprinted polymers. Polym. Int. 2015, 64, 1594–1599. [Google Scholar] [CrossRef]
- El-Safty, S.A. Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths. J. Colloid Interface Sci. 2008, 319, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, Z.; Zhang, H.; Ye, L.; He, J.; Ou, J.; Wu, Q. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem. 2020, 309, 125680. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Guo, R.T.; Duan, C.P.; Wu, G.L.; Miao, Y.F.; Gu, J.W.; Pan, W.G. Removal of gaseous pollutants by using 3DOM-based catalysts: A review. Chemosphere 2021, 262, 127886. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Tian, R.; Yan, W.; Yao, C. Glucose biosensor based on three-dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film. Anal. Chim. Acta 2012, 723, 94–100. [Google Scholar] [CrossRef]
- Ji, X.; Li, Q.; Yu, H.; Hu, X.; Luo, Y.; Li, B. Three-dimensional ordered macroporous ZIF-8 nanoparticle-derived nitrogen-doped hierarchical porous carbons for high-performance lithium-sulfur batteries. RSC Adv. 2020, 10, 41983–41992. [Google Scholar] [CrossRef]
- Fan, H.L.; Sun, T.; Zhao, Y.P.; Shangguan, J.; Lin, J.Y. Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Environ. Sci. Technol. 2013, 47, 4859–4865. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wang, T.; Zhang, Y.; Nurpeissova, A.; Bakenov, Z. Three-Dimensionally Ordered Macroporous ZnO Framework as Dual-Functional Sulfur Host for High-Efficiency Lithium-Sulfur Batteries. Nanomaterials 2020, 10, 2267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, L.; Wen, S.; Luo, H.; Yang, C. Design and synthesis of multistructured three-dimensionally ordered macroporous composite bismuth oxide/zirconia: Photocatalytic degradation and hydrogen production. J. Colloid Interface Sci. 2017, 499, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother. 2022, 151, 113053. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, Y.; Li, Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. J. Hazard. Mater. 2021, 406, 124626. [Google Scholar] [CrossRef]
- Rimer, J.D.; Fedeyko, J.M.; Vlachos, D.G.; Lobo, R.F. Silica self-assembly and synthesis of microporous and mesoporous silicates. Chemistry 2006, 12, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.T.H.; Cao, V.D.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 631–656. [Google Scholar]
- Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605. [Google Scholar] [CrossRef]
- Ghimire, P.P.; Jaroniec, M. Renaissance of Stober method for synthesis of colloidal particles: New developments and opportunities. J. Colloid Interface Sci. 2021, 584, 838–865. [Google Scholar] [CrossRef] [PubMed]
- Schedl, A.E.; Howell, I.; Watkins, J.J.; Schmidt, H.W. Gradient Photonic Materials Based on One-Dimensional Polymer Photonic Crystals. Macromol. Rapid Commun. 2020, 41, e2000069. [Google Scholar] [CrossRef] [PubMed]
- She, H.; Ma, X.; Chang, G. Highly efficient and selective removal of N-heterocyclic aromatic contaminants from liquid fuels in an Ag(I) functionalized metal-organic framework: Contribution of multiple interaction sites. J. Colloid Interface Sci. 2018, 518, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Wu, Z.S.; Zhang, H.Y.; Liu, Z.Y.; Li, D.Q. Mercury Removal by Adsorption on Pectin Extracted from Sugar Beet Pulp: Optimization by Response Surface Methodology. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 2016, 39, 371–377. [Google Scholar] [CrossRef]
- Wang, M.; Ye, F.; Wang, H.; Admassu, H.; Gasmalla, M.A.; Hua, X.; Yang, R. High efficiency selective and reversible capture of lactulose using new boronic acid-functionalized porous polymeric monoliths. Chem. Eng. J. 2019, 370, 1274–1285. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, H.; Kexu, X.; Liu, J.; Yin, X.; Zhang, W.; Pan, J. Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem. Eng. J. 2018, 346, 317–328. [Google Scholar] [CrossRef]
- Ye, F.; Yang, R.; Hua, X.; Zhao, G. Adsorption characteristics of rebaudioside A and stevioside on cross-linked poly(styrene-co-divinylbenzene) macroporous resins functionalized with chloromethyl, amino and phenylboronic acid groups. Food Chem. 2014, 159, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xin, Q.; Wu, X.; Chen, Z.; Yan, Y.; Liu, S.; Wang, M.; Xu, Q. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J. Colloid Interface Sci. 2016, 461, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Chen, K.M.; Guo, X.H. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins. J. Mater. Chem. B 2021, 36, 7557–7565. [Google Scholar] [CrossRef]
- Su, J.; He, X.W.; Chen, L.X.; Zhang, Y.K. A combination of “thiol-ene” click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins. Talanta 2018, 180, 54–60. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, H.; Liu, J.; Ma, Y.; Yao, J.; Dai, X.; Pan, J. Double affinity integrated MIPs nanoparticles for specific separation of glycoproteins: A combination of synergistic multiple bindings and imprinting effect. Chem. Eng. J. 2019, 358, 143–152. [Google Scholar] [CrossRef]
- Yao, J.; Ma, Y.; Liu, J.; Liu, S.; Pan, J. Janus-like boronate affinity magnetic molecularly imprinted nanobottles for specific adsorption and fast separation of luteolin. Chem. Eng. J. 2019, 356, 436–444. [Google Scholar] [CrossRef]
- Ektirici, S.; Göktürk, I.; Yılmaz, F.; Denizli, A. Selective Recognition of Nucleosides by Boronate Affinity Organic-Inorganic Hybrid Monolithic Column. J. Chromatogr. B 2020, 1162, 122477. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
T(K) | Qlmax (mg/g) | KL (mL/μg) | R2 | KF (mg/g) (mL/μg) 1/n | 1/n | R2 |
318.15 | 399.72 | 2.71 | 0.973 | 17.05 | 0.39 | 0.987 |
308.15 | 419.53 | 1.72 | 0.994 | 9.34 | 0.47 | 0.972 |
289.15 | 438.79 | 1.04 | 0.989 | 4.80 | 0.54 | 0.967 |
(KJ/mol) | (KJ/mol) | [J/(mol·K)] | |||
---|---|---|---|---|---|
298.15 K | 308.15 K | 318.15 K | |||
OVA | −37.77 | −43.56 | −43.73 | −43.95 | 19.38 |
Pseudo First-Order Kinetic Model | Pseudo Second-Order Kinetic Model | |||||
---|---|---|---|---|---|---|
Qe (mg g−1) | k1 (min−1) | R2 | Qe (mg/g) | k2 (g mg−1min−1) | R2 | |
OVA | 250.50 | 0.0608 | 0.797 | 227.17 | 0.0003 | 0.932 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Qlmax (mg/g) | KL (mL/μg) | R2 | KF(mg/g) (mL/μg)1/n | 1/n | R2 | |
Adenosine | 100.28 | 0.738 | 0.984 | 0.53 | 0.63 | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, L.; Han, X.; An, Q.; Chen, M.; Song, Z.; Dong, L.; Wang, X.; Yu, Y. Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers 2024, 16, 1539. https://doi.org/10.3390/polym16111539
Li Z, Zhang L, Han X, An Q, Chen M, Song Z, Dong L, Wang X, Yu Y. Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers. 2024; 16(11):1539. https://doi.org/10.3390/polym16111539
Chicago/Turabian StyleLi, Zhipeng, Luxia Zhang, Xiangyu Han, Qinchen An, Mengying Chen, Zichang Song, Linyi Dong, Xianhua Wang, and Yang Yu. 2024. "Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials" Polymers 16, no. 11: 1539. https://doi.org/10.3390/polym16111539
APA StyleLi, Z., Zhang, L., Han, X., An, Q., Chen, M., Song, Z., Dong, L., Wang, X., & Yu, Y. (2024). Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers, 16(11), 1539. https://doi.org/10.3390/polym16111539