High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bisphenol A Type of Benzoxazine (AN and AL)
2.3. The Preparation of Benzoxazine/Epoxy Hybrids
3. Results and Discussion
3.1. Synthesis of Bisphenol A-Functionalized Benzoxazine Monomer (BPA-BZ)
3.2. Synthesis of Double-Decker Silsesquioxane-Functionalized Benzoxazine Monomer (DDSQ-BZ)
3.3. Thermal Polymerization of BPA-BZ Monomer and Epoxy Resin
3.4. Thermal Polymerization of DDSQ-BZ Monomer and Epoxy Resin
3.5. Thermal and Mechanical Properties of DDSQ-BZ and Epoxy Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holly, F.W.; Cope, A.C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J. Am. Chem. Soc. 1944, 66, 1875–1879. [Google Scholar] [CrossRef]
- Lyu, Y.; Ishida, H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications. Prog. Polym. Sci. 2019, 99, 101168. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Chen, C.C.; Zhang, K.; Kuo, S.W. Construction of three-dimensional porous organic polymers with enhanced CO2 uptake performance via solid-state thermal conversion from tetrahedral benzoxazine-linked precursor. Eur. Polym. J. 2023, 200, 112551. [Google Scholar] [CrossRef]
- Higginson, C.J.; Malollari, K.G.; Xu, Y.; Kelleghan, A.V.; Ricapito, N.G.; Messersmith, P.B. Bioinspired design provides high-strength benzoxazine structural adhesives. Angew. Chem. Int. Ed. 2019, 131, 12399–12407. [Google Scholar] [CrossRef]
- Cao, G.; Chen, W.; Wei, J.; Li, W.; Liu, X. Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Express Polym. Lett. 2007, 1, 512–518. [Google Scholar] [CrossRef]
- Dumas, L.; Bonnaud, L.; Olivier, M.; Poorteman, M.; Dubois, P. Eugenol-based benzoxazine: From straight synthesis to taming of the network properties. J. Mater. Chem. A 2015, 3, 6012–6018. [Google Scholar] [CrossRef]
- Chernykh, A.; Liu, J.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669. [Google Scholar] [CrossRef]
- Ishida, H.; Low, H.Y. Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites. J. Appl. Polym. Sci. 1998, 69, 2559–2567. [Google Scholar] [CrossRef]
- Kao, Y.C.; Chen, W.C.; EL-Mahdy, A.F.M.; Mohamed, M.G.; Ejaz, M.; Kuo, S.W. Thermal Stable and Flexible Bio-Based Polybenzoxazine with Epoxy-Functionalized Poly(dimethylsiloxane) Hybrids. Macromol. Chem. Phys. 2023, 224, 2300153. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, W.C.; Mohamed, M.G.; Chen, Z.Y.; Kuo, S.W. Highly Thermally Stable, Reversible, and Flexible Main Chain Type Benzoxazine Hybrid Incorporating Both Polydimethylsiloxane and Double-Decker Shaped Polyhedral Silsesquioxane Units through Diels–Alder Reaction. Macromol. Rapid Commun. 2023, 44, 2200910. [Google Scholar] [CrossRef]
- Lee, H.W.; Liu, Y.L. Thermally stable, flame retardant, low-dielectric constants, and flexible thermosetting resins based on a tetra-functional benzoxazine compound possessing a cyclic siloxane core. J. Appl. Polym. Sci. 2022, 139, e52605. [Google Scholar] [CrossRef]
- Fan, X.; Li, S.; Wang, C.; Deng, Y.; Zhang, C.; Wang, Z. Research on fluoropyridine-based benzoxazine with high thermal stability and excellent flame retardancy for its application in coatings. Eur. Polym. J. 2023, 187, 111884. [Google Scholar] [CrossRef]
- Yuan, X.; Su, X.; Wang, Y.; Liu, L.; Li, R. Wang, Benzoxazine monomers with antibacterial property and polybenzoxazines for preventing adhesion to bacteria. ACS Appl. Polym. Mater. 2023, 5, 5650–5661. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, J.; Zhao, W.; Zhang, K. Bio-benzoxazine structural design strategy toward highly thermally stable and intrinsically flame-retardant thermosets. Chem. Eng. J. 2023, 457, 141232. [Google Scholar] [CrossRef]
- Ding, H.; Wang, X.; Song, L.; Hu, Y. Recent advances in flame retardant bio-based benzoxazine resins. J. Renew. Mater. 2022, 10, 871. [Google Scholar] [CrossRef]
- Chen, D.; Liu, B.; Wang, X.; Li, X.; Xu, X.; He, J.; Yang, R. High flame retardant and heat-resistance, low dielectric benzoxazine resin with phthalimide structure. Polym. Degrad. Stab. 2022, 205, 110150. [Google Scholar] [CrossRef]
- Cao, J.; Duan, H.; Zou, J.; Zhang, J.; Wan, C.; Zhang, C.; Ma, H. Bio-based phosphorus-containing benzoxazine towards high fire safety, heat resistance and mechanical properties of anhydride-cured epoxy resin. Polym. Degrad. Stab. 2022, 198, 109878. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Han, X.; Li, X.; Huyan, C.; Li, J.; Liu, D.; Chen, F. Glass fiber/epoxy composites with improved interfacial adhesion by using cross-linking sizing agent. Polym. Compos. 2023. [Google Scholar] [CrossRef]
- Chamkouri, H.; Ahmadlouydarab, M.; Chamkouri, M.; Saeidavi, F.H. Epoxy resin matrix integrating epoxy-polydimethylsiloxane based self-healing microcapsules: Healing efficiency, mechanical and thermal stability. Polym. Eng. Sci. 2022, 62, 2302–2311. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Murugavel, S. Spectral, thermal, and photoreactivity studies on epoxy resin containing benzylidene units in the main chain. J. Appl. Polym. Sci. 2009, 111, 2340–2344. [Google Scholar] [CrossRef]
- Balakina, M.Y.; Fominykh, O.D.; Rua, F.; Branchadell, V. Modeling of epoxy oligomers with nonlinear optical chromophores in the main chain: Molecular dynamics and quantum chemical study. Int. J. Quantum Chem. 2007, 107, 2398–2408. [Google Scholar] [CrossRef]
- Devi, R.; Murugavel, S. Synthesis, spectral, and thermal characterization of photoreactive epoxy resin containing cycloalkanone moiety in the main chain. J. Appl. Polym. Sci. 2012, 124, 58–66. [Google Scholar] [CrossRef]
- Wu, C.S.; Liu, Y.L.; Chiu, Y.C.; Chiu, Y.S. Thermal stability of epoxy resins containing flame retardant components: An evaluation with thermogravimetric analysis. Polym. Degrad. Stab. 2002, 78, 41–48. [Google Scholar] [CrossRef]
- Lakshmi, M.S.; Narmadha, B.; Reddy, B. Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 2008, 93, 201–213. [Google Scholar] [CrossRef]
- Becker, O.; Varley, R.J.; Simon, G.P. Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites. Eur. Polym. J. 2004, 40, 187–195. [Google Scholar] [CrossRef]
- Tarrio-Saavedra, J.; López-Beceiro, J.; Naya, S.; Artiaga, R. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym. Degrad. Stab. 2008, 93, 2133–2137. [Google Scholar] [CrossRef]
- Kandola, B.K.; Biswas, B.; Price, D.; Horrocks, A.R. Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polym. Degrad. Stab. 2010, 95, 144–152. [Google Scholar] [CrossRef]
- Chiang, C.L.; Chang, R.C.; Chiu, Y.C. Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim. Acta 2007, 453, 97–104. [Google Scholar] [CrossRef]
- Su, W.F.; Lee, Y.C.; Pan, W.P. Thermal properties of phthalic anhydride- and phenolic resin-cured rigid rod epoxy resins. Thermochim. Acta 2002, 392–393, 395–398. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.C.; Lee, H.I.; Suh, D.H. Thermal stability of imidized epoxy blends initiated by N-benzylpyrazinium hexafluoroantimonate salt. Macromolecules 2001, 34, 7573–7575. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Kwak, G.H.; Park, S.J.; Lee, J.R. Thermal stability and mechanical behavior of cycloaliphatic–DGEBA epoxy blend system initiated by cationic latent catalyst. J. Appl. Polym. Sci. 2000, 78, 290–297. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.C. Thermal stability and toughening of epoxy resin with polysulfone resin. J. Polym. Sci. B Polym. Phys. 2001, 39, 121–128. [Google Scholar] [CrossRef]
- El Gouri, M.; El Bachiri, A.; Hegazi, S.E.; Rafik, M.; El Harfi, A. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym. Degrad. Stab. 2009, 94, 2101–2106. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Dai, J.; Liu, Y.; Zhang, Y.; Zhu, J. How does the hydrogen bonding interaction influence the properties of furan-based epoxy resins. Ind. Eng. Chem. Res. 2017, 56, 10929–10938. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.; Wu, S.; Zhang, J.; Cheng, J. The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: Molecular dynamics simulation study. Polym. Test 2021, 101, 107275. [Google Scholar] [CrossRef]
- Montarnal, D.; Tournilhac, F.; Hidalgo, M.; Leibler, L. Epoxy-based networks combining chemical and supramolecular hydrogen-bonding crosslinks. J. Polym. Sci. Part. A Polym. Chem. 2010, 48, 1133–1141. [Google Scholar] [CrossRef]
- Sili, H.; Yuntao, L.; Chunxia, Z.; Jiaojiao, W.; Hui, L.; Dong, X. Advanced anticorrosion coatings prepared from polybenzoxazine/siloxane-containing epoxy resin. Polym. Eng. Sci. 2020, 60, 1812–1821. [Google Scholar] [CrossRef]
- Selvaraj, V.; Jayanthi, K.P.; Alagar, M. Livestock chicken feather fiber reinforced cardanol benzoxazine-epoxy composites for low dielectric and microbial corrosion resistant applications. Polym. Compos. 2019, 40, 4142–4153. [Google Scholar] [CrossRef]
- He, Y.; Suliga, A.; Brinkmeyer, A.; Schenk, M.; Hamerton, I. Effect of atomic oxygen exposure on polybenzoxazine/POSS nanocomposites for space applications. Compos. A Appl. Sci. 2023, 177, 107898. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Kuo, S.W. Progress in the self-assembly of organic/inorganic polyhedral oligomeric silsesquioxane (POSS) hybrids. Soft Mat. 2022, 18, 5535–5561. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Feng, J.; He, R.; Liu, H.; Hu, X.; Liu, X. A research on benzoxazine/cyanate ester/epoxy POSS nanocomposite with low dielectric constant and improved toughness. Polym. Bull. 2023, 80, 12989–13004. [Google Scholar] [CrossRef]
- Sun, X.; Fu, Q.; Dai, P.; Zhang, C.; Xu, R. Catalyzing Benzoxazine Polymerization with Titanium-Containing POSS to Reduce the Curing Temperature and Improve Thermal Stability. Molecules 2023, 28, 5450. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, B.; Ren, D.; Xu, M. Recent Progress of Low Dielectric and High-Performance Polybenzoxazine-Based Composites. Polymers 2023, 15, 3933. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Guo, H.; Ma, X.; Ma, X.; Niu, Z.; Xin, Y.; Hou, X. Enhanced ablation resistance of Divinyl-POSS modified additional liquid silicone rubber and its fiber reinforced composite. Polym. Compos. 2022, 43, 2896–2908. [Google Scholar] [CrossRef]
- Casarino, A.F.; Bortolato, S.A.; Casis, N.; Estenoz, D.A.; Spontón, M.E. Novel polybenzoxazine and polybenzoxazine/epoxy thermosetting copolymers containing polysilsesquioxane nanostructures for high-performance thermal protection systems. Eur. Polym. J. 2023, 182, 111722. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Chen, D.; Zhang, D.; Li, X.; He, J.; Yang, R. Molecular-level fabrication strategies for the POSS cross-linked polybenzoxazines. J. Polym. Sci. 2023, 61, 1634. [Google Scholar] [CrossRef]
- Krishnasamy, B.; Arumugam, H.; Muthukaruppan, A. Thermal behaviour of benzoxazine blends based on epoxy and cyanate ester. Polym. Compos. 2021, 29, S1475–S1485. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, Q.; Deng, Y.; Zhu, R.; Gu, Y. A novel benzoxazine/epoxy blend with multiphase structure. RSC Adv. 2014, 4, 238–242. [Google Scholar] [CrossRef]
- Yue, J.; He, L.; Zhao, P.; Gu, Y. Engineering benzoxazine/epoxy/imidazole blends with controllable microphase structures for toughness improvement. ACS Appl. Polym. Mater. 2020, 2, 3458–3464. [Google Scholar] [CrossRef]
- Ku, S.W.; Liu, W.C. Synthesis and characterization of a cured epoxy resin with a benzoxazine monomer containing allyl groups. J. Appl. Polym. Sci. 2010, 117, 3121–3127. [Google Scholar] [CrossRef]
- Chen, W.C.; Chen, Z.Y.; Ba, Y.; Wang, B.; Chen, G.; Fang, X.; Kuo, S.W. Double-decker-shaped polyhedral silsesquioxanes reinforced epoxy/bismaleimide hybrids featuring high thermal stability. Polymers 2022, 14, 2380. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.W.; Elewa, A.M.; Mohamed, M.G.; Kuo, S.W. Highly stable hybrid porous polymers containing polyhedral oligomeric silsesquioxane (POSS)/Dibenzo[g,p]chrysene and Dibenzo[b,d]thiophene units for efficient Rhodamine B dye removal. Sep. Purif. Technol. 2024, 332, 125771. [Google Scholar] [CrossRef]
- Subramani, D.; Krishnamoorthy, K.; Eeda, N.; Salendra, S.; Achimuthu, A.K. Development of highly flexible sustainable bio-silica reinforced cardanol based poly (benzoxazine-co-epoxy) hybrid composites. J. Macromol. Sci. A 2022, 59, 46–52. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Fu, Q.; Zhang, Q.; Xu, R. Synthesis of a novel bifunctional epoxy double-decker silsesquioxane: Improvement of the thermal stability and dielectric properties of polybenzoxazine. Polymers 2022, 14, 5154. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Kuo, S.W. Ortho-imide and allyl groups effect on highly thermally stable polybenzoxazine/double-decker-shaped polyhedral silsesquioxane hybrids. Macromolecules 2018, 51, 9602–9612. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, Q.; Liu, X.; Zhu, R.; Ran, Q.; Gu, Y. Phase separation in benzoxazine/epoxy resin blending systems. Polym. J. 2013, 45, 637–644. [Google Scholar] [CrossRef]
- Kumar, K.S.; Nair, C.R.; Sadhana, R.; Ninan, K. Benzoxazine–bismaleimide blends: Curing and thermal properties. Eur. Polym. J. 2007, 43, 5084–5096. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Ran, Q.; Zhu, R.; Gu, Y. Research on curing mechanism and thermal property of bis-allyl benzoxazine and N, N′-(2, 2,4-trimethylhexane-1,6-diyl) dimaleimide blend. React. Funct. Polym. 2013, 73, 668–673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, Y.-C.; Lin, J.-Y.; Chen, W.-C.; Gamal Mohamed, M.; Huang, C.-F.; Chen, J.-H.; Kuo, S.-W. High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives. Polymers 2024, 16, 112. https://doi.org/10.3390/polym16010112
Kao Y-C, Lin J-Y, Chen W-C, Gamal Mohamed M, Huang C-F, Chen J-H, Kuo S-W. High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives. Polymers. 2024; 16(1):112. https://doi.org/10.3390/polym16010112
Chicago/Turabian StyleKao, Yang-Chin, Jing-Yu Lin, Wei-Cheng Chen, Mohamed Gamal Mohamed, Chih-Feng Huang, Jung-Hui Chen, and Shiao-Wei Kuo. 2024. "High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives" Polymers 16, no. 1: 112. https://doi.org/10.3390/polym16010112
APA StyleKao, Y. -C., Lin, J. -Y., Chen, W. -C., Gamal Mohamed, M., Huang, C. -F., Chen, J. -H., & Kuo, S. -W. (2024). High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives. Polymers, 16(1), 112. https://doi.org/10.3390/polym16010112