Biaxial Orientation of PLA/PBAT/Thermoplastic Cereal Flour Sheets: Structure–Processing–Property Relationships
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Blend Compounding
2.3. Biaxial Stretching of Cast Sheets
3. Results and Discussions
3.1. Preliminary Study
3.2. Properties of the Bi-Axially Stretched Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, R.A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef][Green Version]
- Rocca-Smith, J.R.; Pasquarelli, R.; Lagorce-Tachon, A.; Rousseau, J.; Fontaine, S.; Aguié-Béghin, V.; Debeaufort, F.; Karbowiak, T. Toward sustainable PLA-based multilayer complexes with improved barrier properties. ACS Sustain. Chem. Eng. 2019, 7, 3759–3771. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, S.; Sun, J.; Ren, Y.; Wang, S.; Wang, X.; Wang, W.; Li, H.; Fei, B.; Gu, X.; et al. A new strategy to prepare fully bio-based poly (lactic acid) composite with high flame retardancy, UV resistance, and rapid degradation in soil. Chem. Eng. J. 2022, 428, 131979. [Google Scholar] [CrossRef]
- Mirabal, A.S.; Scholz, L.; Carus, M. Bio-based polymers in the World: Capacities, Production and Applications: Status Quo and Trends towards 2020. Nova Inst. 2013, 11, 154–159. [Google Scholar]
- Oguz, O.; Candau, N.; Citak, M.K.; Cetin, F.N.; Avaz Seven, S.; Menceloglu, Y.Z. A sustainable approach to produce stiff, super-tough, and heat-resistant poly(lactic acid)-based green materials. ACS Sustain. Chem. Eng. 2019, 7, 7869–7877. [Google Scholar] [CrossRef]
- Walha, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. Biosourced blends based on poly(lactic acid) and polyamide 11: Structure–properties relationships and enhancement of film blowing processability. Adv. Polym. Technol. 2018, 37, 2061–2074. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technology for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.; Luo, B.; Cui, Y.; Shu, S.; Chen, W.; Wang, L. Effect of Styrene-Maleic Anhydride Copolymer on Properties of PBST/PLA Blends. Polymers 2023, 15, 952. [Google Scholar] [CrossRef]
- Babaei, A.; Haji Abdolrasouli, M.; Rostami, A. Polylactic acid/polycaprolactone bionanocomposites containing zinc oxide nanoparticles: Structure, characterization and cytotoxicity assay. J. Thermoplast. Compos. Mater. 2022, OnlineFirst. [Google Scholar] [CrossRef]
- Sempere-Torregrosa, J.; Ferri, J.M.; Rosa-Ramirez, H.; Pavon, C.; Samper, M.D. Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend. Polymers 2022, 14, 4205. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Biosourced Poly (lactic acid)/polyamide-11 Blends: Effect of an Elastomer on the Morphology and Mechanical Properties. Molecules 2022, 27, 6819. [Google Scholar] [CrossRef] [PubMed]
- Rasselet, D.; Caro-Bretelle, A.-S.; Taguet, A.; Lopez-Cuesta, J.-M. Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing. Materials 2019, 12, 485. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend in freshwater with sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef] [PubMed]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications- A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lu, X.; Zhao, J.; Yang, X.; Xiao, P. Morphology and properties of biodegradable poly (lactic acid)/poly(butylene adipate-co-terephthalate) blends with different viscosity ratio. Polym. Test. 2017, 60, 58–67. [Google Scholar] [CrossRef]
- Gu, S.Y.; Zhang, K.; Ren, J.; Zhan, H. Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr. Polym. 2008, 74, 79–85. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Coltelli, M.B.; Bronco, S.; Chinea, C. The effect of free radical reactions on structure and properties of poly(lactic acid)(PLA) based blends. Polym. Degrad. Stab. 2010, 95, 332–341. [Google Scholar] [CrossRef]
- Masahiro, N.; Hiroki, I.; Hiroki, W.; Norio, F.; Hiroaki, I. Effect of Dialkyl Peroxide Blending on Tensile Properties of PLA/PBAT Polymer Alloys. Eng. Trans. 2012, 60, 171–184. [Google Scholar]
- Coltelli, M.B.; Toncelli, C.; Ciardelli, F.; Bronco, S. Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polym. Degrad. Stab. 2011, 96, 982–990. [Google Scholar] [CrossRef]
- Girdthep, S.; Worajittiphon, P.; Molly, R.; Leejarkpai, T.; Punyodom, W. Formulation and characterization of compatibilized poly(lactic acid)-based blends and their nanocomposites with silver-loaded kaolinite. Polym. Int. 2015, 64, 203–211. [Google Scholar] [CrossRef]
- Dong, W.; Zou, B.; Ma, P.; Liu, W.; Zhou, X.; Shi, D.; Ni, Z.; Chen, M. Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends. Polym. Int. 2013, 62, 1783–1790. [Google Scholar] [CrossRef]
- Coltelli, M.B.; Maggiore, I.D.; Bertoldo, M.; Signori, F.; Bronco, S.; Ciardelli, F. Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate blending and acetyl tributyl citrate plasticization. J. App. Polym. Sci. 2008, 110, 1250–1262. [Google Scholar] [CrossRef]
- Quero, E.; Muller, A.J.; Signori, F.; Coltelli, M.B.; Bronco, S. Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol. Chem. Phys. 2012, 213, 36–48. [Google Scholar] [CrossRef]
- Pluta, M. Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 3392–3405. [Google Scholar] [CrossRef]
- Nofar, M.; Heuzey, M.C.; Carreau, P.J.; Kamal, M.R. Nanoparticle Interactions and Molecular Relaxation in PLA/PBAT/Nanoclay Blends. Exp. Results 2020, 1, E47. [Google Scholar] [CrossRef]
- Carbonell-Verdu, A.; Ferri, J.M.; Dominici, F.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Torre, L. Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polym. Lett. 2018, 12, 808–823. [Google Scholar] [CrossRef]
- Jiang, W.; Qiao, X.; Tang, Z.; Sun, K. Preparation and properties of thermoplastic acetylated starch. Acta Polym. Sin. 2006, 6, 97–101. [Google Scholar] [CrossRef]
- Martin, O.; Averous, L. Poly (lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.; Ma, X. Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym. Int. 2007, 56, 1440–1447. [Google Scholar] [CrossRef]
- Huneault, M.A.; Li, H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 2007, 48, 270–280. [Google Scholar] [CrossRef]
- Zhang, J.F.; Sun, X. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 2004, 94, 1697–1704. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Liu, Q.; Hrymak, A. The Effect of Polymeric Chain Extenders on Physical Properties of Thermoplastic Starch and Polylactic Acid Blends. J. Polym. Environ. 2012, 20, 315–325. [Google Scholar] [CrossRef]
- Sarazin, P.; Li, G.; Orts, W.J.; Favis, B.D. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599–609. [Google Scholar] [CrossRef]
- Phetwarotai, W.; Duangdao, A. Reactive Compatibilization of Polylactide, Thermoplastic Starch and Poly(butylene adipate-co-terephthalate) Biodegradable Ternary Blend Films. Mater. Sci. Forum 2011, 695, 178–181. [Google Scholar] [CrossRef]
- Yoksan, R.; Dang, K.M.; Boontanimitr, A.; Chirachanchai, S. Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters. Int. J. Biol. Macromol. 2021, 190, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Chapleau, N.; Huneault, M.; Li, H. Biaxial Orientation of Polylactide/Thermoplastic Starch Blends. Int. Polym. Process. 2007, 22, 8. [Google Scholar] [CrossRef][Green Version]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A.; Billon, N.; Combeaud, C. Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur. Polym. J. 2015, 68, 288–301. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological and interfacial properties of compatibilized PLA/PBAT blends. Rheol. Acta 2014, 53, 501–517. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102. [Google Scholar] [CrossRef]
- Katanyoota, P.; Jariyasakoolroj, P.; Sane, A. Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Polym. Bull. 2022, 80, 5219–5237. [Google Scholar] [CrossRef]
(a) Samples | % wt Joncryl in the Blend | % wt TCF in the Blend | PLA/PBAT Ratio in the Blend |
---|---|---|---|
TCF + PLA/PBAT (0/100) | 0 | 33% | 0/100 |
TCF + PLA/PBAT (20/80) | 0 | 33% | 20/80 |
TCF + PLA/PBAT (40/60) | 0 | 33% | 40/60 |
TCF + PLA/PBAT (60/40) | 0 | 33% | 60/40 |
TCF + PLA/PBAT (80/20) | 0 | 33% | 80/20 |
TCF + PLA/PBAT (100/0) | 0 | 33% | 100/0 |
(b) Samples | % wt Joncryl in the Blend | % wt TCF in the Blend | PLA/PBAT Ratio in the Blend |
TCF + PLA/PBAT (20/80) | 0.5 | 33% | 20/80 |
TCF + PLA/PBAT (40/60) | 0.5 | 33% | 40/60 |
TCF + PLA/PBAT (60/40) | 0.5 | 33% | 60/40 |
TCF + PLA/PBAT (80/20) | 0.5 | 33% | 80/20 |
PLA/PBAT Ratio into PLA/PBAT/TCF Blends | Elastic Modulus (MPa) | Yield Stress (MPa) | Elongation at Break (%) |
---|---|---|---|
0/100 | 96.5 ± 6.8 | 7.4 ± 1.1 | 14.5 ± 4 |
20/80 | 184 ± 24 | 8 ± 1 | 9 ± 2 |
40/60 | 452 ± 52.4 | 11.5 ± 0.75 | 5.7 ± 1.2 |
60/40 | 1029 ± 47 | 19 ± 1.35 | 2.4 ± 0.4 |
80/20 | 1508 ± 97.5 | 25 ± 3.8 | 1.8 ± 0.25 |
100/0 | 2103 ± 79 | 29 ± 3 | 1.2 ± 0.2 |
Samples | Composition |
---|---|
PLA | 100 % wt PLA |
PBAT | 100 % wt PBAT |
TCF+PLA/PBAT (60/40) | 33 % wt TCF in the blend + PLA/PBAT (60/40) |
TCF+PLA/PBAT/Joncryl (60/40/0.5) | 33 % wt TCF in the blend+ PLA/PBAT (60/40) + 0.5 % wt Joncryl |
TCF+PLA/PBAT/Joncryl (60/40/0.9) | 33 % wt TCF in the blend+ PLA/PBAT (60/40) + 0.9 % wt Joncryl |
Samples (=0.2 s−1) | Maximum Stress before Break (MPa) | Uniaxial Strain Hardening Parameter (SHP) or Strain Limit (Hencky) | Samples (= 0.4 s−1) | Maximum Stress before Break (MPa) | Uniaxial Strain Hardening Parameter (SHP) or Strain Limit (Hencky) |
---|---|---|---|---|---|
PLA | 35 | 1.5 | PLA | 35 | 1.7 |
PBAT | 18 | 2.25 | PBAT | 18 | 2.25 |
TCF + PLA/PBAT (60/40) | 14 | 1.7 | TCF + PLA/PBAT (60/40) | 15 | 1.4 |
TCF + PLA/PBAT/Joncryl (60/40/0.5) | 16 | 1.75 | TCF+PLA/PBAT/Joncryl (60/40/0.5) | 17 | 1.4 |
TCF + PLA/PBAT/Joncryl (60/40/0.9) | 19 | 1.65 | TCF + PLA/PBAT/Joncryl (60/40/0.9) | 19 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaouadi, N.; Al-Itry, R.; Maazouz, A.; Lamnawar, K. Biaxial Orientation of PLA/PBAT/Thermoplastic Cereal Flour Sheets: Structure–Processing–Property Relationships. Polymers 2023, 15, 2068. https://doi.org/10.3390/polym15092068
Jaouadi N, Al-Itry R, Maazouz A, Lamnawar K. Biaxial Orientation of PLA/PBAT/Thermoplastic Cereal Flour Sheets: Structure–Processing–Property Relationships. Polymers. 2023; 15(9):2068. https://doi.org/10.3390/polym15092068
Chicago/Turabian StyleJaouadi, Nour, Racha Al-Itry, Abderrahim Maazouz, and Khalid Lamnawar. 2023. "Biaxial Orientation of PLA/PBAT/Thermoplastic Cereal Flour Sheets: Structure–Processing–Property Relationships" Polymers 15, no. 9: 2068. https://doi.org/10.3390/polym15092068
APA StyleJaouadi, N., Al-Itry, R., Maazouz, A., & Lamnawar, K. (2023). Biaxial Orientation of PLA/PBAT/Thermoplastic Cereal Flour Sheets: Structure–Processing–Property Relationships. Polymers, 15(9), 2068. https://doi.org/10.3390/polym15092068