Stab-Resistant Polymers—Recent Developments in Materials and Structures
Abstract
1. Introduction
2. Stab Resistance Measurement Methods
3. Modeling and Correlations with Other Physical Parameters
4. New Shapes and Polymers
5. 3D Printed Polymer-Based Body Armor
6. Reinforced Polymers and Composites for Stab Resistance
7. Textile Fabrics with Ceramic Coatings
8. Textile Fabrics with Shear-Thickening Fluid
9. Pure Textile Fabrics for Stab Resistance
10. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reiners, P. Investigation about the Stab Resistance of Textile Structures, Methods for Their Testing and Improvements. Dissertation Thesis, Université de Haute Alsace, Alsace, France, 2016. [Google Scholar]
- Yadav, R.; Naebe, M.; Wang, X.G.; Kandasubramanian, B. Body armour materials: From steel to contemporary biomimetic systems. RSC Adv. 2016, 6, 115145–115174. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A. Soft body armour. Text. Prog. 2019, 51, 139–224. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A review of fibrous materials for soft body armour applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- Scott, K.W.M. Homicide patterns in the West Midlands. Med. Sci. Law 1990, 30, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Behera, C.; Sikary, A.K.; Gupta, S.K. Homicide patterns for the last 20 years in South and South East Delhi, India. Med. Sci. Law 2019, 59, 83–94. [Google Scholar] [CrossRef]
- Rikken, Q.G.H.; Chadid, A.; Peters, J.; Geeraedts, L.M.G.; Giannakooulos, G.F.; Tan, E.C.T.H. Epidemiology of penetrating injury in an urban versus rural level 1 trauma center in the Netherlands. Hong Kong J. Emerg. Med. 2022, 29, 38–45. [Google Scholar] [CrossRef]
- Hakkenbrak, N.A.G.; Bakkum, E.R.; Zuidema, W.P.; Halm, J.A.; Dorn, T.; Reijnders, U.J.L.; Giannakopoulos, G.F. Characteristics of fatal penetrating injury; data from a retrospective cohort study in three urban regions in the Netherlands. Injury 2023, 54, 256–260. [Google Scholar] [CrossRef]
- LaTourrette, T. The life-saving effectiveness of body armor for police officers. J. Occup. Environ. Hyg. 2010, 7, 557–562. [Google Scholar] [CrossRef]
- Sitotaw, D.B.; Ahrendt, D.; Kyosev, Y.; Kabish, A.K. A review on the performance and comfort of stab protection armor. AUTEX Res. J. 2022, 22, 96–107. [Google Scholar] [CrossRef]
- Muenks, D.; Pilgrim, J.; Kyosev, Y. Possibilities for qualitative evaluation of the protection area of protective clothing. Commun. Dev. Assem. Text. Prod. 2022, 3, 156–162. [Google Scholar] [CrossRef]
- Ricciardi, R.; Deuster, P.A.; Talbot, L.A. Metabolic Demands of Body Armor on Physical Performance in Simulated Conditions. Mil. Med. 2008, 173, 817. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, M. Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials. Fibres Text. East. Eur. 2010, 18, 45–50. [Google Scholar]
- Nayak, R.; Kanesalingam, S.; Wang, L.; Padhye, R. Stab resistance and thermophysiological comfort properties of boron carbide coated aramid and ballistic nylon fabrics. J. Text. Inst. 2019, 110, 1159–1168. [Google Scholar] [CrossRef]
- Parmar, M.S.; Kapil, N.; Sisodia, N. Development of a Unique Stab and Impact Resistant Material for Anti-riot Body Protector. In Functional Textiles and Clothing; Majumdar, A., Gupta, D., Gupta, S., Eds.; Springer: Singapore, 2020; pp. 55–66. [Google Scholar]
- KDIW 2004. Available online: https://www.vpam.eu/pruefrichtlinien/aktuell/kdiw-2004/ (accessed on 14 January 2023).
- Home Office Body Armor Standard 2017 (Knife and Spike). Available online: https://protectiongroupdenmark.com/articles/14-home-office-body-armor-standard-2017-knife-and-spike/ (accessed on 14 January 2023).
- NIJ Standard–0115.00; Stab Resistance of Personal Body Armor. National Institute of Justice: Washington, DC, USA, 2000.
- NIJ Standard–0115.01; Draft: Stab Resistance of Personal Body Armor. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- ASTMF1342/F1342M-05(2022); Standard Test Method for Protective Clothing Material Resistance to Puncture. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/f1342_f1342m-05r22.html (accessed on 14 January 2023).
- DIN EN 388:2016+A1:2018; Protective Gloves against Mechanical Risks; with an Amendment from 2018.
- ISO 13997:1999; Protective Clothing—Mechanical properties—Determination of Resistance to Cutting by Sharp Objects.
- EN 13594:2015; Protective Gloves for Motorcyclists.
- Nayak, R.; Crouch, I.; Kanesalingam, S.; Wang, L.J.; Ding, J.; Tan, P.; Lee, B.; Miao, M.H.; Ganga, D.; Padhye, R. Body armor for stab and spike protection, Part 2: A review of test methods. Text. Res. J. 2018, 89, 3411–3430. [Google Scholar] [CrossRef]
- Bleetman, A. Determining the Protective Requirements of Stab-Resistant Body Armour: The Vulnerability of the Internal Organs to Penetrating Edged Weapons. Proc. Sharp Weapons Armour Technology Symposium; Cranfield University: Bedford, UK, 1999. [Google Scholar]
- Nayak, R.; Crouch, I.; Kanesalingam, S.; Ding, J.; Tan, P.; Lee, B.; Miao, M.H.; Ganga, D.; Wang, L.J. Body armor for stab and spike protection, Part 1: Scientific literature review. Text. Res. J. 2017, 88, 812–832. [Google Scholar] [CrossRef]
- Knight, B. The dynamics of stab wounds. Forensic Sci. 1975, 6, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Noakes, L.; Leadbetter, S. The mechanics of stab wounding. Forensic Sci. Int. 1994, 67, 59–63. [Google Scholar] [CrossRef]
- Horsfall, I. Stab Resistant Body Armour. Ph.D. Thesis, Cranfield University, Bedford, UK, 2000. [Google Scholar]
- Termonia, Y. Puncture resistance of fibrous structures. Int. J. Impact Eng. 2006, 32, 1512–1520. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.X.; Zhao, J.Z.; Ma, P.B. Failure mechanism of weft-knitted insertion fabric/Surlyn resin flexible composite for stab resistance. Text. Res. J. 2022; online first. [Google Scholar] [CrossRef]
- Bartat, W.; Sokolowski, D.; Gieleta, R. Numerical and experimental research on stab resistance of a body armour package. Fibers Text. East. Eur. 2014, 22, 90–96. [Google Scholar]
- Du, Z.; Chen, C.J.; Wang, X.H. The mechanism of stab resistance of carbon fiber reinforced polymer. Eng. Fail. Anal. 2022, 142, 106817. [Google Scholar] [CrossRef]
- Guo, Y.X.; Yuan, M.Q.; Qian, X.M.; Wei, Y.C.; Liu, Y. Rapid prediction of polymer stab resistance performance. Mater. Des. 2020, 192, 108721. [Google Scholar] [CrossRef]
- Ramakrishna, D.; Murali, G.B. Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2022; online first. [Google Scholar] [CrossRef]
- Yang, J.K.; Gu, D.D.; Lin, K.J.; Ma, C.L.; Wang, R.; Zhang, H.M.; Guo, M. Laser 3D printed bio-inspired impact resistant structure: Failure mechanism under compressive loading. Virtual Phys. Prototyp. 2020, 15, 75–86. [Google Scholar] [CrossRef]
- Islam, M.K.; Hazell, P.J.; Escobedo, J.P.; Wang, H.X. Biomimetic armour design strategies for additive manufacturing: A review. Mater. Des. 2021, 205, 109730. [Google Scholar] [CrossRef]
- Liu, Q.; Mao, H.W.; Niu, L.; Chen, F.X.; Ma, P.B. Excellent flexibility and stab-resistance on pangolin-inspired scale-like structure composite for versatile protection. Compos. Commun. 2022, 35, 101266. [Google Scholar] [CrossRef]
- Liu, Q.; Lang, L.L.; Luo, M.; Wu, Q.; Kang, Y.; Ma, P.B. Stab resistance of flexible composite reinforced with warp-knitted fabric like scale structure at quasi-static loading. J. Ind. Text. 2022, 51, 7983S–7998S. [Google Scholar] [CrossRef]
- Yong, K.C. Rubber Wood Fibre Based Flexible Composites: Their Preparation, Physical Strength Reinforcing and Stab Resistance Behaviour. Polym. Comp. 2014, 22, 375–380. [Google Scholar] [CrossRef]
- Nakahata, M.; Takashima, Y.; Harada, A. Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromol. Rap. Comm. 2016, 37, 86–92. [Google Scholar] [CrossRef]
- Tan, M.; Cui, Y.L.; Zhu, A.D.; Han, H.; Guo, M.Y.; Jiang, M. Ultraductile, notch and stab resistant supramolecular hydrogels via host-guest interactions. Polym. Chem. 2015, 6, 7543. [Google Scholar] [CrossRef]
- Li, R.; Zhang, K.L.; Cai, L.; Chen, G.X.; He, M.H. Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polymer 2019, 167, 154–158. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Optical elements from 3D printed polymers. e-Polymers 2021, 21, 549–565. [Google Scholar] [CrossRef]
- Cicek, U.I.; Southee, D.J.; Johnson, A.A. Assessing the stab resistive performance of material extruded body armour specimens. Int. J. Prot. Struct. 2022; online first. [Google Scholar] [CrossRef]
- Maidin, S.; Chong, S.Y.; Heing, T.K.; Abdullah, Z.; Alkahari, R. Stab resistant analysis of body armour design features manufactured via fused deposition modelling process. In Textile Manufacturing Processes; Uddin, F., Ed.; IntechOpen: London, UK, 2019; pp. 69–83. [Google Scholar]
- Jiang, J.H.; Yuan, M.Q.; Ji, T.C. Investigations on laser sintered textiles for stab-resistant application. Solid Freeform Fabrication. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 10–12 August 2015; pp. 2155–2164. [Google Scholar]
- Gong, Z.; Qian, X.M.; Yuan, M.Q. Structural design of a 3-D printed stab resistant body armor. Rapid Prototyp. J. 2019, 25, 143–151. [Google Scholar] [CrossRef]
- Yuan, M.Q.; Liu, Y.; Gong, Z.; Qian, X.M. The application of PA/CF in stab resistance body armor. IOP Conf. Ser. Mater. Sci. Eng. 2017, 213, 012027. [Google Scholar] [CrossRef]
- He, J.J.; Yuan, M.Q.; Gong, Z.; Qian, X.M. Egg-shell structure design for stab resistant body armor. Mater. Today Comm. 2018, 16, 26–36. [Google Scholar] [CrossRef]
- Sitotaw, D.B.; Ahrendt, D.; Kyosev, Y.; Kabish, A.K. Investigation of Stab Protection Properties of Aramid Fibre-Reinforced 3D Printed Elements. Fibres Text. East. Eur. 2021, 29, 67–73. [Google Scholar] [CrossRef]
- Ahrendt, D.; Krzywinski, S.; Justo i Massot, E.; Krzywinski, J. Hybrid material designs by the example of additive manufacturing for novel customized stab protective clothing. In Proceedings of the Light-Weight Armour for Defense & Security (LWAG), Roubaix, France, 8–9 October 2019; pp. 286–294. [Google Scholar]
- Miao, L.; Jiang, T.T.; Lin, S.D.; Jin, T.; Hu, J.W.; Zhang, M.; Tu, Y.Y.; Liu, G.J. Asymmetric forward osmosis membranes from p-aramid nanofibers. Mater. Des. 2020, 191, 108591. [Google Scholar] [CrossRef]
- Kim, H.D.; Nam, I.W. Stab Resisting Behavior of Polymeric Resin Reinforced p-Aramid Fabrics. J. Appl. Polym. Sci. 2012, 123, 2733–2742. [Google Scholar] [CrossRef]
- Stojanovic, D.B.; Zrilic, M.; Jancic-Heinemann, R.; Zivkovic, I.; Kojovic, A.; Uskokovic, P.S.; Aleksic, R. Mechanical and anti-stabbing properties of modified thermoplastic polymers impregnated multiaxial p-aramid fabrics. Polym. Adv. Technol. 2013, 24, 772–776. [Google Scholar] [CrossRef]
- Simic, D.M.; Stojanovic, D.B.; Dimic, M.; Miskovic, K.; Marjanovic, M.; Burzic, Z.; Uskokovic, P.S.; Zak, A.; Tenne, R. Impact resistant hybrid composites reinforced with inorganic nanoparticles and nanotubes of WS2. Comp. B Eng. 2019, 176, 107222. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Qiang, Y.-Q.; Peng, H.-K.; Xing, M.-F.; Zhang, X.-Y.; Lou, C.-W. Enhancement of a Novel Sizing Agent in Mechanical Properties and Stab/Puncture Resistance of Kevlar Fabrics. Fibers Polym. 2021, 22, 3309–3316. [Google Scholar] [CrossRef]
- Mayo, J.B., Jr.; Wetzel, E.D.; Hosur, M.V.; Jeelani, S. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics. Int. J. Impact Eng. 2009, 36, 1095–1105. [Google Scholar] [CrossRef]
- Li, C.-S.; Huang, X.-C.; Yang, N.C.; Shen, Z.H.; Fan, X.-H. Stab resistance of UHMWPE fiber composites impregnated with thermoplastics. Polym. Adv. Technol. 2014, 25, 1014–1019. [Google Scholar] [CrossRef]
- Firouzi, D.; Foucher, D.A.; Bougherara, H. Nylon-Coated Ultra High Molecular Weight Polyethylene Fabric for Enhanced Penetration Resistance. J. Appl. Polym. Sci. 2014, 131, 40350. [Google Scholar] [CrossRef]
- Cheon, J.S.; Lee, M.W.; Kim, M.K. Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites. Compos. Struct. 2020, 234, 111690. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Bao, L.M.; Lin, M.-C.; Lou, C.-W.; Lin, T.A. Mechanical and Static Stab Resistant Properties of Hybrid-Fabric Fibrous Planks: Manufacturing Process of Nonwoven Fabrics Made of Recycled Fibers. Polymers 2019, 11, 1140. [Google Scholar] [CrossRef]
- Khuyen, N.Q.; Han, P.V.D.; Nguyen, N.T.; Le, Q.B.; Harjo, M.; Anbarjafari, G.; Kiefer, R.; Tamm, T. The Use of Laminates of Commercially Available Fabrics for Anti-Stab Body-Armor. Polymers 2021, 13, 1077. [Google Scholar] [CrossRef]
- Grimmelsmann, N.; Meissner, H.; Ehrmann, A. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. IOP Conf. Ser. Mater. Sci. Eng. 2016, 137, 012011. [Google Scholar] [CrossRef]
- Xu, W.L.; Sun, Y.X.; Lin, H.T.; Wie, C.Y.; Ma, P.B.; Xia, F.L. Preparation of soft composite reinforced with auxetic warp-knitted spacer fabric for stab resistance. Text. Res. J. 2019, 90, 323–332. [Google Scholar] [CrossRef]
- Novak, N.; Dubrovski, P.D.; Borovinsek, M.; Vesenjak, M.; Ren, Z. Deformation behaviour of advanced textile composites with auxetic structure. Compos. Struct. 2020, 252, 112761. [Google Scholar] [CrossRef]
- Sun, Y.X.; Xu, W.L.; Wei, W.F.; Ma, P.B.; Xia, F.L. Stab-resistance of auxetic weft-knitted fabric with Kevlar fibers at quasi-static loading. J. Ind. Text. 2019, 5, 1384–1396. [Google Scholar] [CrossRef]
- Rodríguez-Millán, M.; Díaz-Álvarez, A.; Aranda-Ruiz, J.; Díaz-Álvarez, J.; Loya, J.A. Experimental analysis for stabbing resistance of different aramid composite architectures. Compos. Struct. 2019, 208, 525–534. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.-T.; Wang, Y.X.; Shiu, B.-C.; Peng, H.-K.; Lou, C.-W.; Lin, J.-H. Hydrogel with high toughness and strength for fabricating high performance stab-resistant aramid composite fabric. J. Mater. Res. Technol. 2021, 15, 1630–1641. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Li, D.Y.; Yuan, Z.S. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction. J. Eng. Fibers Fabr. 2022, 17, 15589250221081856. [Google Scholar] [CrossRef]
- Gadow, R.; von Niessen, K. Ceramic coatings on fiber woven fabrics. Ceramic Eng. Sci. Proc. 2002, 23, 277–285. [Google Scholar]
- Gadow, R.; von Niessen, K. Lightweight Ballistic with Additional Stab Protection Made of Thermally Sprayed Ceramic and Cermet Coatings on Aramide Fabrics. Int. J. Appl. Ceram. Technol. 2006, 3, 284–292. [Google Scholar] [CrossRef]
- Manaee, P.; Valefi, Z.; Goodarz, M. The effect of bond coat type on the stab resistance of Al2O3–13 wt% TiO2 plasma sprayed ceramic coating on aramid fabrics. Surf. Interf. 2020, 18, 100432. [Google Scholar] [CrossRef]
- Xia, M.M.; Quan, Z.Z.; Wang, X.L.; Yu, J.Y. Preparation and characterization of B4C particle coated composites for stab-resistance. Compos. Struct. 2019, 228, 111370. [Google Scholar] [CrossRef]
- Yang, W.-Q.; Liu, X.-Y.; Yu, Y.-P.; Yu, W.-D. Evaluation of Stab Resistance of Coated UHMWPE Fabric. Fibres Text. East. Eur. 2020, 28, 76–79. [Google Scholar]
- Wei, R.; Zhai, W.; Li, F.; Li, Y.J.; Zhang, W.T.; Liang, Y.F.; Dong, B.; Wang, X.W. Enhancing stab resistance of thermoset–aramid composite fabrics by coating with SiC particles. J. Ind. Text. 2018, 48, 1228–1241. [Google Scholar]
- Javaid, M.U.; Jabbar, A.; Irfan, M.; Javed, Z. Investigation of the stab resistance mechanism and performance of uncoated and SiO2 coated high-performance aramid fabrics. J. Text. Inst. 2022, 113, 2143–2158. [Google Scholar] [CrossRef]
- Obradovic, V.; Stojanovic, D.B.; Jokic, B.; Zrilic, M.; Radojevic, V.; Uskokovic, P.S.; Aleksic, R. Nanomechanical and anti-stabbing properties of Kolon fabric composites reinforced with hybrid nanoparticles. Comp. B Eng. 2017, 108, 143–152. [Google Scholar] [CrossRef]
- Kanesalingam, S.; Nayak, R.; Wang, L.J.; Padhye, R.; Arnold, L. Stab and puncture resistance of silica-coated Kevlar–wool and Kevlar–wool–nylon fabrics in quasistatic conditions. Text. Res. J. 2019, 89, 2219–2235. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, J.R.; Zhao, Y.H.; Qin, Y.; Zhu, Z.Y.; Yu, Z.C.; He, H.L. Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Comp. B Eng. 2022, 247, 110348. [Google Scholar] [CrossRef]
- He, H.L.; Liu, J.R.; Wang, Y.S.; Zhao, Y.H.; Qin, Y.; Zhu, Z.Y.; Yu, Z.C.; Wang, J.F. An Ultralight Self-Powered Fire Alarm e-Textile Based on Conductive Aerogel Fiber with Repeatable Temperature Monitoring Performance Used in Firefighting Clothing. ACS Nano 2022, 16, 2953–2967. [Google Scholar] [CrossRef] [PubMed]
- He, H.L.; Qin, Y.; Liu, J.R.; Wang, Y.S.; Wang, J.F.; Zhao, Y.H.; Zhu, Z.Y.; Jiang, Q.; Wang, Y.H.; Qu, X.R.; et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 2023, 460, 141661. [Google Scholar] [CrossRef]
- Barnes, H.A. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 1989, 33, 329–366. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wagner, N.J. Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 2003, 42, 199–208. [Google Scholar] [CrossRef]
- Catherall, A.A.; Melrose, J.R.; Ball, R.C. Shear thickening and order–disorder effects in concentrated colloids at high shear rates. J. Rheol. 2000, 44, 1–25. [Google Scholar] [CrossRef]
- Maranzano, B.J.; Wagner, N.J. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J. Chem. Phys. 2002, 117, 10291–10302. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wetzel, E.D.; Wagner, N.J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 2003, 38, 2825–2833. [Google Scholar] [CrossRef]
- Decker, M.J.; Halbach, C.J.; Nam, C.H.; Wagner, N.J.; Wetzel, E.D. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 2007, 67, 565–578. [Google Scholar] [CrossRef]
- Kang, T.J.; Hong, K.H.; Yoo, M.R. Preparation and Properties of Fumed Silica/Kevlar Composite Fabrics for Application of Stab Resistant Material. Fibers Polym. 2010, 11, 719–724. [Google Scholar] [CrossRef]
- Kang, T.J.; Kim, C.Y.; Hong, K.W. Rheological Behavior of Concentrated Silica Suspension and Its Application to Soft Armor. J. Appl. Polym. Sci. 2012, 124, 1534–1541. [Google Scholar] [CrossRef]
- Li, T.-T.; Dai, W.N.; Wu, L.W.; Peng, H.-K.; Zhang, X.Y.; Shiu, B.-C.; Lin, J.-H.; Lou, C.-W. Effects of STF and Fiber Characteristics on Quasi-Static Stab Resistant Properties of Shear Thickening Fluid (STF)-Impregnated UHMWPE/Kevlar Composite Fabrics. Fibers Polym. 2019, 20, 328–336. [Google Scholar] [CrossRef]
- Li, W.; Xiong, D.S.; Zhao, X.D.; Sun, L.L.; Liu, J. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid. Mater. Des. 2016, 102, 162–167. [Google Scholar] [CrossRef]
- Sun, L.-L.; Xiong, D.-S.; Xu, C.-Y. Application of Shear Thickening Fluid in Ultra High Molecular Weight Polyethylene Fabric. J. Appl. Polym. Sci. 2013, 129, 1922–1928. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.h.; Vahid, S.; Sabet, A.R.; Hadavinia, H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos. B Eng. 2019, 162, 643–652. [Google Scholar] [CrossRef]
- Hassan, T.A.; Rangari, V.K.; Jeelani, S. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater. Sci. Eng. A 2010, 527, 2892–2899. [Google Scholar] [CrossRef]
- Mahfuz, H.; Clements, F.; Rangari, V.; Dhanak, V.; Beamson, G. Enhanced stab resistance of armor composites with functionalized silica nanoparticles. J. Appl. Phys. 2009, 105, 064307. [Google Scholar] [CrossRef]
- Wei, R.B.; Dong, B.; Wang, F.L.; Yang, J.J.; Jiang, Y.Y.; Zhai, W.; Li, H. Effects of silica morphology on the shear-thickening behavior of shear thickening fluids and stabbing resistance of fabric composites. J. Appl. Polym. Sci. 2020, 137, 48809. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.-T.; Peng, H.-K.; Wang, Z.K.; Huo, H.L.; Lou, C.-W.; Lin, J.-H. Effects of bi-particlesized shear thickening fluid on rheological behaviors and stab resistance of Kevlar fabrics. J. Ind. Text. 2022, 51, 3014S–3029S. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A.; Bhattacharjee, D.; Biswas, I.; Laha, A.; Arora, S.; Ghosh, A. Improving the impact resistance of p-aramid fabrics by sequential impregnation with shear thickening fluid. Fibers Polym. 2016, 17, 199–204. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Gebremeskel, S.A.; Bhatnagar, N. Impact Response of Shear Thickening Fluid (STF) Treated High Strength Polymer Composites—Effect of STF Intercalation Method. Proc. Eng. 2017, 173, 655–662. [Google Scholar] [CrossRef]
- Qin, J.B.; Guo, B.R.; Zhang, L.; Wang, T.W.; Zhang, G.C.; Shi, X.T. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Comp. B Eng. 2020, 183, 107686. [Google Scholar] [CrossRef]
- Li, D.Y.; Wang, R.; Liu, X.; Fang, S.; Sun, Y.L. Shear-Thickening Fluid Using Oxygen-Plasma-Modified Multi-Walled Carbon Nanotubes to Improve the Quasi-Static Stab Resistance of Kevlar Fabrics. Polymers 2018, 10, 1356. [Google Scholar] [CrossRef]
- Li, D.Y.; Wang, R.; Guan, F.W.; Zhu, Y.J.; You, F.F. Enhancement of the quasi-static stab resistance of Kevlar fabrics impregnated with shear thickening fluid. J. Mater. Res. Technol. 2022, 18, 3673–3683. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.S.; Liu, S.; Cao, S.S.; Wang, S.; Bai, L.F.; Sang, M.; Xuan, S.H.; Jiang, W.Q.; Gong, X.L. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Compos. A Appl. Sci. Manuf. 2019, 126, 105612. [Google Scholar] [CrossRef]
- Wang, S.; Xuan, S.H.; Liu, M.; Bai, L.F.; Zhang, S.S.; Sang, M.; Jiang, W.Q.; Gong, X.L. Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance. Soft Matter 2017, 13, 2483–2491. [Google Scholar] [CrossRef]
- Gürgen, S.; Kushan, M.C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Comp. A Appl. Sci. Manuf. 2017, 94, 50–60. [Google Scholar] [CrossRef]
- Gürgen, S.; Kushan, M.C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Gürgen, S.; Yildi, T. Stab resistance of smart polymer coated textiles reinforced with particle additives. Comp. Struct. 2020, 235, 111812. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.-T.; Peng, H.-K.; Lou, C.-W.; Lin, J.-H. Enhanced sandwich structure composite with shear thickening fluid and thermoplastic polyurethanes for High-performance stab resistance. Comp. Struct. 2022, 280, 114930. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.-T.; Wang, Z.K.; Peng, H.-K.; Lou, C.-W.; Lin, J.-H. Facile fabrication and mass production of TPU/Silica/STF coated aramid fabric with excellent flexibility and quasi-static stab resistance for versatile protection. Progr. Org. Coat. 2021, 151, 106088. [Google Scholar] [CrossRef]
- Mayo, J.B., Jr.; Wetzel, E.D. Cut resistance and failure of high-performance single fibers. Text. Res. J. 2014, 84, 1233–1246. [Google Scholar] [CrossRef]
- Tian, L.X.; Shi, J.J.; Chen, H.X.; Huang, X.M.; Cao, H.J. Cut-resistant performance of Kevlar and UHMWPE covered yarn fabrics with different structures. J. Text. Inst. 2022, 113, 1457–1463. [Google Scholar] [CrossRef]
- Li, T.-T.; Wang, Z.K.; Zhang, X.Y.; Wu, L.W.; Lou, C.-W.; Lin, J.-H. Dynamic cushion, quasi-static stab resistance, and acoustic absorption analyses of flexible multifunctional inter-/intra-bonded sandwich-structured composites. J. Text. Inst. 2021, 112, 47–55. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, T.-T.; Sun, F.; Peng, H.-K.; Wang, Z.K.; Lin, J.-H.; Lou, C.-W. Stab/Puncture Resistance Performance of Needle Punched Nonwoven Fabrics: Effects of Filament Reinforcement and Thermal Bonding. Fibers Polym. 2022, 23, 2330–2339. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.L.; Luo, Q.; Sun, Z.L.; He, H.J.; Chen, C.Y.; Ma, P.B. Stab-resistance improvement of short carbon fiber reinforced UHMWPE knitted composites with plasma/oxidation treatment. J. Ind. Text. 2022; online first. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Ma, P.B. Experimental investigation on stab-resistant properties of co-woven-knitted fabric. J. Eng. Fibers Fabr. 2022, 17, 15589250221090502. [Google Scholar] [CrossRef]
- Tien, D.T.; Kim, J.S.; Huh, Y. Stab-resistant Property of the Fabrics Woven with the Aramid/Cotton Core-spun Yarns. Fibers Polym. 2010, 11, 500–506. [Google Scholar] [CrossRef]
- Tien, D.T.; Kim, J.S.; Huh, Y. Evaluation of anti-stabbing performance of fabric layers woven with various hybrid yarns under different fabric conditions. Fibers Polym. 2011, 12, 808. [Google Scholar] [CrossRef]
- Li, T.-T.; Zhang, X.Y.; Wu, L.W.; Peng, H.K.; Shiu, B.-C.; Lou, C.-W.; Lin, J.-H. Polyethylene terephthalate/basalt stab-resistant sandwich composites based on the Box–Behnken design: Parameter optimization and empirical regression model. J. Sandw. Struct. Mater. 2020, 22, 2391–2407. [Google Scholar] [CrossRef]
- Nasser, J.; Steinke, K.; Groo, L.A.; Sodano, H.A. Improved Interyarn Friction, Impact Response, and Stab Resistance of Surface Fibrilized Aramid Fabric. Adv. Mater. Interfaces 2019, 6, 1900881. [Google Scholar] [CrossRef]
- Li, M.R.; Wang, P.; Boussu, F.; Soulat, D. Dynamic stab resistance of multi-ply three-dimensional warp interlock fabrics with high-performance high-molecular-weight polyethylene yarns for protective applications. J. Ind. Text. 2022, 51, 2391S–2411S. [Google Scholar] [CrossRef]
- Li, M.R.; Boussu, F.; Soulat, D.; Luo, J.; Wang, P. Impact resistance of pre-deformed stab of multi-ply three-dimensional interlock polymeric fabrics. J. Ind. Text. 2022, 51, 4818S–4841S. [Google Scholar] [CrossRef]
- Li, M.R.; Wang, P.; Boussu, F.; Soulat, D. Investigation of impact performance of 3-dimensional interlock polymer fabrics in double and multi-angle pass stabbing. Mater. Des. 2021, 206, 109775. [Google Scholar] [CrossRef]
- El Messiry, M.; Eltahan, E. Stab resistance of triaxial woven fabrics for soft body armor. J. Ind. Text. 2016, 45, 1062–1082. [Google Scholar] [CrossRef]
- El Messiry, M.; El-Tarfawy, S.Y. Cutting resistance of flexible armour using multiple layers of triaxial Kevlar fabric. J. Ind. Text. 2022, 51, 1564S–1591S. [Google Scholar] [CrossRef]
- Kozior, T.; Blachowicz, T.; Ehrmann, A. Adhesion of 3D printing on textiles fabrics—Inspiration from and for other research areas. J. Eng. Fibers Fabr. 2020, 15, 1558925020910875. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panneke, N.; Ehrmann, A. Stab-Resistant Polymers—Recent Developments in Materials and Structures. Polymers 2023, 15, 983. https://doi.org/10.3390/polym15040983
Panneke N, Ehrmann A. Stab-Resistant Polymers—Recent Developments in Materials and Structures. Polymers. 2023; 15(4):983. https://doi.org/10.3390/polym15040983
Chicago/Turabian StylePanneke, Niklas, and Andrea Ehrmann. 2023. "Stab-Resistant Polymers—Recent Developments in Materials and Structures" Polymers 15, no. 4: 983. https://doi.org/10.3390/polym15040983
APA StylePanneke, N., & Ehrmann, A. (2023). Stab-Resistant Polymers—Recent Developments in Materials and Structures. Polymers, 15(4), 983. https://doi.org/10.3390/polym15040983