Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Refinement of Alkali Lignin (A-Lignin)
2.3. Preparation of PUF and PUF–FRs
2.4. Characterization
3. Results and Discussion
3.1. Flame Retardancy of PUFs
3.2. Thermal Stability of PUFs
3.3. Combustion Behavior of PUFs
3.4. Physical and Mechanical Properties of PUFs
3.5. Char Residue Analysis of PUFs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kabakci, E.; Sayer, O.; Suvaci, E.; Uysal, O.; Guler, I.; Kaya, M. Processing-structure-property relationship in rigid polyurethane foams. J. Appl. Polym. Sci. 2017, 134, 13. [Google Scholar] [CrossRef]
- Javni, I.; Bilic, O.; Ljubic, D.; Wan, X.; Petrovic, Z.S.; Upshaw, T.A. Polymercaptan-based polyurethane foams. J. Cell. Plast. 2016, 52, 643–656. [Google Scholar] [CrossRef]
- Serrano, A.; Borreguero, A.M.; Catala, J.; Rodriguez, J.F.; Carmona, M. Effect of Foaming Formulation and Operating Pressure on Thermoregulating Polyurethane Foams. Polymers 2021, 13, 2328. [Google Scholar] [CrossRef] [PubMed]
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Karadag, S.; Eker, A.A.; Eker, B. Polyurethane foam materials and their industrial applications. Polym. Int. 2022, 71, 1157–1163. [Google Scholar] [CrossRef]
- Czech-Polak, J.; Oliwa, R.; Oleksy, M.; Budzik, G. Rigid polyurethane foams with improved flame resistance. Polimery 2018, 63, 115–124. [Google Scholar] [CrossRef]
- Gunther, M.; Lorenzetti, A.; Schartel, B. Fire Phenomena of Rigid Polyurethane Foams. Polymers 2018, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zarzyka, I. Foamed polyurethane plastics of reduced flammability. J. Appl. Polym. Sci. 2018, 135, 11. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Yang, H.Y.; Lin, X.; Xiang, S.M.; Feng, X.M.; Wan, C.J. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview. Materials 2023, 16, 2728. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Korwitz, A.; Pospiech, D.; Schartel, B. Flame Retardant Combinations with Expandable Graphite/Phosphorus/CuO/Castor Oil in Flexible Polyurethane Foams. ACS Appl. Polym. Mater. 2023, 11, 1891–1901. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Chen, C.Y.; Fan, R.L.; Yuan, Y.; Xing, Y.L.; Ma, X. Halogen-free flame-retardant rigid polyurethane foam with a nitrogen-phosphorus flame retardant. J. Fire Sci. 2017, 35, 99–117. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xu, B.; Wang, X.D.; Liu, Y.T. A phosphorous-based bi-functional flame retardant for rigid polyurethane foam. Polym. Degrad. Stabil. 2021, 186, 12. [Google Scholar] [CrossRef]
- Feng, F.; Qian, L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym. Compos. 2014, 35, 301–309. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Yang, R. The effects of aluminum hydroxide and ammonium polyphosphate on the flame retardancy and mechanical property of polyisocyanurate–polyurethane foams. J. Fire Sci. 2015, 33, 459–472. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, C.; Shi, Y.; Song, L.; Hu, Y.; Hu, W. Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Mater. Chem. Phys. 2018, 211, 42–53. [Google Scholar] [CrossRef]
- Yurtseven, R. Effects of Ammonium Polyphosphate/Melamine Additions on Mechanical, Thermal and Burning Properties of Rigid Polyurethane Foams. Acta Phys. Pol. A 2019, 135, 775–777. [Google Scholar] [CrossRef]
- Luo, F.B.; Wu, K.; Guo, H.L.; Zhao, Q.; Liang, L.Y.; Lu, M.G. Effect of cellulose whisker and ammonium polyphosphate on thermal properties and flammability performance of rigid polyurethane foam. J. Therm. Anal. Calorim. 2015, 122, 717–723. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, L.S.; Wang, W.; Qian, L.J. Preparation and characterization of surface-modified ammonium polyphosphate and its effect on the flame retardancy of rigid polyurethane foam. J. Appl. Polym. Sci. 2017, 134, 9. [Google Scholar] [CrossRef]
- Luo, F.B.; Wu, K.; Lu, M.G.; Nie, S.B.; Li, X.Y.; Guan, X.X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J. Therm. Anal. Calorim. 2015, 120, 1327–1335. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Yan, J.T.; Sun, H.M.; Cheng, Z.Q.; Li, W.J.; Wang, H.Y.; Cui, X.J. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym. Int. 2014, 63, 84–92. [Google Scholar] [CrossRef]
- Li, L.S.; Chen, Y.J.; Wu, X.D.; Xu, B.; Qian, L.J. Bi-phase flame-retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam. Polym. Adv. Technol. 2019, 30, 2721–2728. [Google Scholar] [CrossRef]
- Banu, J.R.; Kavitha, S.; Kannah, R.Y.; Devi, T.P.; Gunasekaran, M.; Kim, S.H.; Kumar, G. A review on biopolymer production via lignin valorization. Bioresour. Technol. 2019, 290, 16. [Google Scholar] [CrossRef]
- Chio, C.L.; Sain, M.; Qin, W.S. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Yoo, C.G.; Meng, X.Z.; Pu, Y.Q.; Ragauskas, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol. 2020, 301, 10. [Google Scholar] [CrossRef]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, W.F.; Yang, D.J.; Qiu, X.Q. Highly Resilient Lignin-Containing Polyurethane Foam. Ind. Eng. Chem. Res. 2019, 58, 496–504. [Google Scholar] [CrossRef]
- Li, Y.; Ragauskas, A.J. Kraft Lignin-Based Rigid Polyurethane Foam. J. Wood Chem. Technol. 2012, 32, 210–224. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hatakeyama, T. Advances of Polyurethane Foams Derived from Lignin. J. Renew. Mater. 2013, 1, 113–123. [Google Scholar] [CrossRef]
- Kimura, H.; Ohtsuka, K.; Matsumoto, A.; Ougi, T.; Ishibashi, Y.; Yarnano, K. High Performance Phenolic Resin Based on Untreated Natural Herbaceous Lignin. Polym. Polym. Compos. 2015, 23, 525–534. [Google Scholar] [CrossRef]
- Yang, W.S.; Jiao, L.; Wang, X.; Wu, W.B.; Lian, H.L.; Dai, H.Q. Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int. J. Biol. Macromol. 2021, 166, 1312–1319. [Google Scholar] [CrossRef]
- Sasaki, C.; Wanaka, M.; Takagi, H.; Tamura, S.; Asada, C.; Nakamura, Y. Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind. Crops Prod. 2013, 43, 757–761. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Pang, H.; Wei, D.D.; Li, J.L.; Li, S.M.; Lin, X.J.; Wang, F.; Liao, B. Preparation and characterization of chemical grouting derived from lignin epoxy resin. Eur. Polym. J. 2019, 118, 290–305. [Google Scholar] [CrossRef]
- Cheng, S.J.; Pang, X.F.; Jiang, G.Q.; Pang, J.Y. Studies of polyurethane foams prepared with hybrid silicon and hydroxymethylated lignin. Asia Pac. J. Chem. Eng. 2023, 18, 15. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zeng, J.; Liu, W.F.; Qiu, X.Q.; Qian, Y.; Zhang, H.; Yang, Y.; Liu, M.; Yang, D.J. Pristine lignin as a flame retardant in flexible PU foam. Green Chem. 2021, 23, 5972–5980. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z. Preparation and properties of alkali lignin-based polyurethane foam with expanded graphite. J. Funct. Mater. 2019, 50, 05110–05115. [Google Scholar]
- GB/T 2406-1993; Plastics Determination of Fammability by Oxygen Index. State Bureau of Technical Supervision: Beijing, China, 1993.
- GB/T6343-2009; Cellular Plastics and Rubbers. Determination of Apparent Density. Standardization Administration of China: Beijing, China, 2009.
- GB/T8813-2008; Rigid Cellular Plastics—Determination of Compression Properties. Standardization Administration of China: Beijing, China, 2008.
- Xu, W.; Wang, G.J. Influence of thermal behavior of phosphorus compounds on their flame retardant effect in PU rigid foam. Fire Mater. 2016, 40, 826–835. [Google Scholar] [CrossRef]
- Xing, W.Y.; Yuan, H.X.; Zhang, P.; Yang, H.Y.; Song, L.; Hu, Y. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: Preparation, thermal stability, fire performance and mechanical properties. J. Polym. Res. 2013, 20, 12. [Google Scholar] [CrossRef]
- Lu, W.M.; Li, Q.; Zhang, Y.; Yu, H.W.; Hirose, S.; Hatakeyama, H.; Matsumoto, Y.; Jin, Z.F. Lignosulfonate/APP IFR and its flame retardancy in lignosulfonate-based rigid polyurethane foams. J. Wood Sci. 2018, 64, 287–293. [Google Scholar] [CrossRef]
- Luo, Y.F.; Miao, Z.N.; Sun, T.; Zou, H.W.; Liang, M.; Zhou, S.T.; Chen, Y. Preparation and mechanism study of intrinsic hard segment flame-retardant polyurethane foam. J. Appl. Polym. Sci. 2021, 138, 16. [Google Scholar] [CrossRef]
- Raji, A.M.; Hambali, H.U.; Khan, Z.I.; Mohamad, Z.B.; Azman, H.; Ogabi, R. Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. J. Cell. Plast. 2023, 59, 65–122. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Li, D.S.; Xu, M.J.; Li, B. Synthesis of a novel phosphorus and nitrogen-containing flame retardant and its application in rigid polyurethane foam with expandable graphite. Polym. Degrad. Stabil. 2020, 173, 11. [Google Scholar] [CrossRef]
- Chen, X.L.; Jiang, Y.F.; Jiao, C.M. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J. Hazard. Mater. 2014, 266, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Niu, Y.J.; Xie, Z.P.; Liang, F.; Guo, F.H.; Wu, J.J. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem. Eng. J. 2023, 451, 21. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting-How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef]
- Yang, H.T.; Yu, B.; Xu, X.D.; Bourbigot, S.; Wang, H.; Song, P.A. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Henry, C.; Nejad, M. Lignin-Based Low-Density Rigid Polyurethane/Polyisocyanurate Foams. Ind. Eng. Chem. Res. 2023, 62, 6865–6873. [Google Scholar] [CrossRef]
- Gama, N.V.; Soares, B.; Freire, C.S.R.; Silva, R.; Neto, C.P.; Barros-Timmons, A.; Ferreira, A. Bio-based polyurethane foams toward applications beyond thermal insulation. Mater. Des. 2015, 76, 77–85. [Google Scholar] [CrossRef]
- Wang, S.J.; Qian, L.J.; Xin, F. The Synergistic Flame-Retardant Behaviors of Pentaerythritol Phosphate and Expandable Graphite in Rigid Polyurethane Foams. Polym. Compos. 2018, 39, 329–336. [Google Scholar] [CrossRef]
Samples | Polyol (g) | PAPI (g) | DBTDL (g) | H2O (g) | Silicone Oil (g) | A-Lignin (g) | MFAPP (g) |
---|---|---|---|---|---|---|---|
PUF | 80 | 103.5 | 0.4 | 1.6 | 1.6 | - | - |
PUF/MFAPP7 | 80 | 103.5 | 0.4 | 1.6 | 1.6 | - | 12.8 |
PUF/MFAPP5.6/A-lignin1.4 | 80 | 103.5 | 0.4 | 1.6 | 1.6 | 2.5 | 10.3 |
PUF/MFAPP12/A-lignin3 | 80 | 103.5 | 0.4 | 1.6 | 1.6 | 5.5 | 22.0 |
Sample | Burning Time (s) | UL-94 | LOI (%) | ||||
---|---|---|---|---|---|---|---|
tignition1 | t1 | tignition2 | t2 | t1 + t2 | |||
PUF | 10 | Burning (20.48) | 10 | - | Burning(20.48) | Fail | 18.5 |
PUF/MFAPP7 | 10 | 10.49 | 10 | 1.69 | 12.18 | V-1 | 21.4 |
PUF/MFAPP5.6/A-lignin1.4 | 10 | 7.08 | 10 | 0.96 | 8.04 | V-0 | 22.0 |
PUF/MFAPP12/A-lignin3 | 10 | 2.69 | 10 | 0.75 | 3.44 | V-0 | 23.1 |
Sample | T5% (°C) | Rmax/Tmax (%·min−1/°C) | Residues at 800 °C (%) |
---|---|---|---|
PUF | 236.4 | −6.5/318.2 | 20.21 |
PUF/MFAPP7 | 235.7 | −8.3/320.6 | 25.49 |
PUF/MFAPP5.6/A-lignin1.4 | 239.0. | −8.2/316.8 | 26.66 |
PUF/MFAPP12/A-lignin3 | 251.7 | −7.4/315.8 | 34.81 |
Samples | TTI (s) | PHRR (kW/m2) | THR (MJ/m2) | PSPR (m2/s) | TSP (m2) | Residues (%) |
---|---|---|---|---|---|---|
PUF | 2.0 | 288.6 | 15.4 | 0.10 | 3.05 | 14.5 |
PUF/MFAPP7 | 4.0 | 267.0 | 12.3 | 0.14 | 3.65 | 16.8 |
PUF/MFAPP5.6/A-lignin1.4 | 4.0 | 261.7 | 11.1 | 0.13 | 3.37 | 18.8 |
PUF/MFAPP12/A-lignin3 | 4.0 | 255.7 | 10.0 | 0.08 | 2.89 | 21.9 |
Samples | Density (kg/m3) | Thermal Conductivity (mW/(m·K)) | Compressive Strength (kPa) | ||
---|---|---|---|---|---|
0 °C | 25 °C | 60 °C | |||
PUF | 26.7 | 29.63 | 134.1 | 132.4 | 128.6 |
PUF/MFAPP7 | 29.9 | 30.85 | 111.8 | 110.0 | 106.2 |
PUF/MFAPP5.6/A-lignin1.4 | 32.2 | 31.93 | 152.7 | 150.2 | 148.9 |
PUF/MFAPP12/A-lignin3 | 35.4 | 32.68 | 160.9 | 160.5 | 159.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, C.; An, X.; Niu, L.; Feng, J.; Liu, Z. Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam. Polymers 2023, 15, 4709. https://doi.org/10.3390/polym15244709
Li X, Liu C, An X, Niu L, Feng J, Liu Z. Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam. Polymers. 2023; 15(24):4709. https://doi.org/10.3390/polym15244709
Chicago/Turabian StyleLi, Xu, Chang Liu, Xinyu An, Li Niu, Jacko Feng, and Zhiming Liu. 2023. "Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam" Polymers 15, no. 24: 4709. https://doi.org/10.3390/polym15244709
APA StyleLi, X., Liu, C., An, X., Niu, L., Feng, J., & Liu, Z. (2023). Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam. Polymers, 15(24), 4709. https://doi.org/10.3390/polym15244709