Preparation and Characterization of PHBV/PCL-Diol Blend Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PHBV/PCL-Diol Blends
2.3. Sample Characterization
3. Results and Discussion
3.1. Appearance of PHBV/PCL-Diol Films
3.2. Structural Analysis
3.3. Morphological Analysis
3.4. Static Water Contact Angles
3.5. Atomic Force Microscopy (AFM)
3.6. DSC Analysis
3.7. Tensile Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Siracusa, V.; Roculli, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- PlasticsEurope. An Analysis of European Plastics Production, Demand, Conversion and End-of-Life Management. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 17 July 2023).
- Alabi, O.A.; Ologbonjaye, K.; Awosolu, O.; Alalade, O. Public and environmental health effects of plastic wastes disposal: A review. J. Toxicol. Risk Assess. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, D.; Dejean, C. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part I. Biodegradation in Soil. J. Polym. Environ. 2010, 18, 384–400. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Loh, X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Mater. 2016, 8, e265. [Google Scholar] [CrossRef]
- Dalton, B.; Bhagabati, P.; De Micco, J.; Padamati, R.B.; O’Connor, K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Deelopment of Multiple Applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Kaniuk, L.; Stachewicz, U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater. Sci. Eng. 2021, 7, 5339–5362. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, D.H.S.; Bhattacharya, M. Steady Shear and Dynamic Properties of Biodegradable Polyesters. Polym. Eng. Sci. 1998, 38, 1426–1435. [Google Scholar] [CrossRef]
- Ha, C.S.; Cho, W.J. Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog. Polym. Sci. 2002, 27, 759–809. [Google Scholar] [CrossRef]
- Policastro, G.; Panico, A.; Fabbricino, M. Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: A critical review. Rev. Environ. Sci. 2021, 20, 479–513. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, A.K.M.; Mohanty, A.K. Sustainable PHBV/Cellulose Acetate Blends: Effect of a Chain Extender and a Plasticizer. ACS Omega 2020, 5, 14221–14231. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Briso, A.L.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Lolić, L.; Mekonnen, T.H. Reactive extrusion of highly filled, compatibilized, and sustainable PHBV/PBAT—Hemp residue biocomposite. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106885. [Google Scholar] [CrossRef]
- Kontogianni, G.-I.; Bonatti, A.F.; De Maria, C.; Naseem, R.; Melo, P.; Coelho, C.; Vozzi, G.; Dalgarno, K.; Quadros, P.; Vitale-Brovarone, C.; et al. Promotion of In Vitro Osteogenic Activity by Melt Extrusion-Based PLLA/PCL/PHBV Scaffolds Enriched with Nano-Hydroxyapatite and Strontium Substituted Nano-Hydroxyapatite. Polymers 2023, 15, 1052. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cerezo, M.N.; Patel, R.; Vaquette, C.; Grøndahl, E.; Lu, M. In Vitro evaluation of porous poly(hydroxybutyrate-co-hydroxy valerate)/akermanite composite scaffolds manufactured using selective laser sintering. Biomater. Adv. 2022, 135, 212748. [Google Scholar] [CrossRef]
- Rodriguez-Uribe, A.; Wang, T.; Wang, T.; Akhilesh, P.; Wu, F.; Mohanty, A.K.; Misra, M. Injection moldable hybrid sustainable composites of BioPBS and PHBV reinforced with talc and starch as potential alternatives to single-use plastic packaging. Compos. Part C Open Access 2021, 6, 100201. [Google Scholar] [CrossRef]
- Scheithauer, E.C.; Li, W.; Ding, Y.; Harhaus, L.; Roether, J.A.; Boccaccini, A.R. Preparation and characterization of electrosprayed daidzein-loaded PHBV microspheres. Mater. Lett. 2015, 158, 66–69. [Google Scholar] [CrossRef]
- Gaudio, C.D.; Ercolani, E.; Nanni, F.; Bianco, A. Assessment of poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends processed by solvent casting and electrospinning. Mater. Sci. Eng. 2011, 528, 1764–1772. [Google Scholar] [CrossRef]
- Zhang, K.; Mohanty, A.K.; Misra, M. Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties. ACS Appl. Mater. Interfaces 2012, 4, 3091–3101. [Google Scholar] [CrossRef]
- Naseem, R.; Montalbano, G.; German, M.J.; Ferreira, A.M.; Gentile, P.; Dalgarno, K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules 2022, 27, 7633. [Google Scholar] [CrossRef]
- Bianco, A.; Calderone, M.; Caccioti, I. Electrospun PHBV/PEO co-solution blends: Microstructure, thermal and mechanical properties. Mater. Sci. Eng. C 2013, 33, 1067–1077. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Wang, T.; Mohanty, A.K.; Misra, M. Thermal and Mechanical Properties of the Biocomposites of Miscanthus Biocarbon and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV). Polymers 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Yamamoto, Y. Synthesis and characterization of photo crosslinked poly(ε-caprolactone)s showing shape-memory properties. J. Polym. Sci. A Polym. Chem. 2009, 47, 2422–2433. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/standards/d882 (accessed on 10 December 2023).
- Erceg, T.; Vukić, N.; Šovljanski, O.; Stupar, A.; Šergelj, V.; Aćimović, M.; Baloš, S.; Ugarković, J.; Šuput, D.; Popović, S.; et al. Characterization of Films Based on Cellulose Acetate/Poly(caprolactone diol) Intended for Active Packaging Prepared by Green Chemistry Principles. ACS Sustain. Chem. Eng. 2022, 10, 9141–9154. [Google Scholar] [CrossRef]
Sample | Scanned Area (µm) | Sa (nm) | Sq (nm) | Ssk | Sku | Spk (nm) | Svk (nm) |
---|---|---|---|---|---|---|---|
PHBV/PCL-diol 40/60 | 50 × 50 20 × 20 10 × 10 | 161.4 ± 19.8 | 202.7 ± 21.2 | 0.03 ± 0.11 | 3.03 ± 0.24 | 208.9 ± 13.8 | 183.9 ±14.2 |
122.6 ± 21.6 | 152.7 ± 20.3 | −0.07 ± 0.23 | 2.95 ± 0.22 | 141.6 ± 12.2 | 144.3 ±18.4 | ||
100.3 ± 15.6 | 124.9 ± 21.6 | −0.10 ± 0.32 | 2.92 ± 0.32 | 115.4 ± 7.1 | 120.0 ± 12.65 | ||
PHBV/PCL-diol 50/50 | 128.8 ± 7.6 | 161.7 ± 9.1 | −0.37 ± 0.13 | 3.18 ± 0.11 | 135.3 ± 5.7 | 181.5 ± 12.9 | |
106.9 ± 8.5 | 135.7 ± 9.6 | −0.40 ± 0.13 | 3.52 ± 0.12 | 112.8 ± 20.6 | 164.9 ± 15.1 | ||
85.1 ± 12.4 | 106.5 ± 15.2 | −0.43 ± 0.11 | 3.22 ± 0.14 | 77.3 ± 6.8 | 124.9 ± 18.0 | ||
PHBV/PCL-diol 60/40 | 186.2 ± 16.8 | 238.8 ± 18.4 | −0.53 ± 0.23 | 3.68 ± 0.22 | 162.3 ± 15.6 | 320.3 ± 24.3 | |
152.1 ± 12.13 | 196.8 ± 25.1 | −0.60 ± 0.13 | 3.77 ± 0.13 | 140.4 ± 14.3 | 276.6 ±24.2 | ||
77.6 ± 13.2 | 98.7 ± 16.6 | −0.25 ± 0.22 | 3.69 ± 0.21 | 90.7 ± 14.8 | 115.6 ± 14.5 |
Sample | Tg, °C | Tm, °C | ΔHm, J/g | Xc, % |
---|---|---|---|---|
PCL-diol | −18 | 57 | 75 | 55.5 |
PHBV | −4 | 175 | 46 | 31.5 |
PHBV/PCL-diol 40/60 | −11 | 49 171 | 14 54 | 48.7 |
PHBV/PCL-diol 50/50 | −1 | 50 171 | 11 45 | 46.9 |
PHBV/PCL-diol 60/40 | −1 | 48 171 | 8 61 | 48.7 |
Sample | TS (N/mm2) | EB (%) |
---|---|---|
Neat PHBV | 11.07 ± 4.38 | 5.69 ± 2.15 |
PHBV/PCL-diol 60/40 | 4.80 ± 1.32 | 1.61 ± 0.74 |
PHBV/PCL-diol 50/50 | 3.35 ± 0.65 | 2.37 ± 0.86 |
PHBV/PCL-diol 40/60 | 5.20 ± 2.85 | 2.03 ± 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erceg, T.; Rackov, S.; Terek, P.; Pilić, B. Preparation and Characterization of PHBV/PCL-Diol Blend Films. Polymers 2023, 15, 4694. https://doi.org/10.3390/polym15244694
Erceg T, Rackov S, Terek P, Pilić B. Preparation and Characterization of PHBV/PCL-Diol Blend Films. Polymers. 2023; 15(24):4694. https://doi.org/10.3390/polym15244694
Chicago/Turabian StyleErceg, Tamara, Sanja Rackov, Pal Terek, and Branka Pilić. 2023. "Preparation and Characterization of PHBV/PCL-Diol Blend Films" Polymers 15, no. 24: 4694. https://doi.org/10.3390/polym15244694
APA StyleErceg, T., Rackov, S., Terek, P., & Pilić, B. (2023). Preparation and Characterization of PHBV/PCL-Diol Blend Films. Polymers, 15(24), 4694. https://doi.org/10.3390/polym15244694