High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization of Materials
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C.H. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020, 74, 104844. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, Q.; Allahyarov, E.; Li, Y.; Zhu, L. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl. Mater. Interfaces 2021, 13, 37939–37960. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.W.; Tian, Y.; Zheng, M.S.; Wan, B.; Yang, X.; Chen, G. High-temperature energy storage polyimide dielectric materials: Polymer multiple-structure design. Mater. Today Energy 2023, 31, 101217. [Google Scholar] [CrossRef]
- Wei, J.; Ju, T.; Huang, W.; Song, J.; Yan, N.; Wang, F.; Shen, A.; Li, Z.; Zhu, L. High dielectric constant dipolar glass polymer based on sulfonylated poly(ether ether ketone). Polymer 2019, 178, 121688. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Y.; Zhang, T.; Zhang, C.; Zhang, Y.; Zhang, Y.; Chen, Q.; Chi, Q. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater. 2020, 25, 180–192. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Popa, M.S.; Ciuprina, F.; Enache, L.; Frone, A.N.; Nicolae, C.A.; Gabor, A.R.; Trusca, R.; Raditoiu, V.; Trica, B.; et al. Role of polyaniline coating on nanosilica particles in polyvinylidene fluoride nanocomposites for energy storage. Surf. Interfaces 2023, 36, 102546. [Google Scholar] [CrossRef]
- Li, Q.; Yao, F.Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Zhong, S.-L.; Pei, J.-Y.; Zhao, Y.; Zhang, D.-L.; Liu, D.-F.; Zhang, Y.-X.; Dang, Z.-M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2021, 122, 3820–3878. [Google Scholar] [CrossRef]
- Cao, X.; Wang, C.; Han, K.; Lu, X.; Luo, N.; Ren, K. Lead-free AgNbO3/poly(vinylidene fluoride-hexafluoropropylene) antiferroelectric nanocomposite for high energy density capacitor applications. J. Phys. D Appl. Phys. 2021, 54, 405501. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.; Kong, X.; Gao, D.; Wang, Y.; Hu, T.; Zhang, L. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol. 2019, 177, 18–25. [Google Scholar] [CrossRef]
- Xie, X.; Tian, J.; Cao, X.; Li, X.; Zhang, J.; Wang, Z.; Ren, K. Ultralow-Content (Bi0.5Na0.5) TiO3–NaNbO3/PVDF-HFP Nanocomposites for Ultrahigh-Energy-Density Capacitor Applications. ACS Appl. Energy Mater. 2022, 5, 7651–7660. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, S.; Ren, K. 2D MoS2 nanosheet-based polyimide nanocomposite with high energy density for high temperature capacitor applications. Macromol. Mater. Eng. 2021, 306, 2100079. [Google Scholar] [CrossRef]
- Dai, Z.; Bao, Z.; Ding, S.; Liu, C.; Sun, H.; Wang, H.; Zhou, X.; Wang, Y.; Yin, Y.; Li, X. Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Mater. 2022, 34, 2101976. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cao, X.; Tian, J.; Yu, F.; Jiang, F.; Ren, K. Significantly enhanced energy density of nanodiamond/polyimide composites at high temperatures with ultralow nanodiamond contents. Sci. China Technol. Sci. 2023, 66, 956–965. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Xu, W.; Zhu, X.; Niu, S.; Zhang, Y.; Jiang, Z. Crosslinked polyetherimide nanocomposites with superior energy storage achieved via trace Al2O3 nanoparticles. Compos. Sci. Technol. 2022, 223, 109421. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q.; Runt, J.; Zhang, Q.M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, C.; Wang, S.; Zhu, Y.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J.; Li, Q. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 2020, 28, 255–263. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, J.; Gao, L.; Zhou, Y.; Peng, S.M.; He, J.L.; Dang, Z.M. Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Adv. 2016, 6, 33599–33605. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, T.; Zhang, Q.M. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds. Nano Energy 2019, 64, 103916. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, B.; Zhang, T.; Lu, W.; Chen, Z.; Liu, Z.; Kim, S.H.; Donovan, B.; Warzoha, R.J.; et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021, 4, 2448–2459. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. All-organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications. J. Polym. Sci. 2021, 59, 1414–1423. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Tian, J.; Tian, S.; Yu, F.; Ren, K. Composition design of BNBT-ST relaxor ferroelectric ceramics in superparaelectric state with ultrahigh energy density. Ceram. Int. 2023, 49, 27750–27757. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Liu, D.-F.; Zhang, Y.-X.; Pei, J.-Y.; Zhong, S.-L.; Hu, H.-Y.; Wang, X.-J.; Dang, Z.-M. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 2022, 99, 107410. [Google Scholar] [CrossRef]
- Li, C.; Shi, L.; Yang, W.; Zhou, Y.; Li, X.; Zhang, C.; Yang, Y. All polymer dielectric films for achieving high energy density film capacitors by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea. Nanoscale Res. Lett. 2020, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, T.R.; Wübbenhorst, M.; Gerhard, R. Structure-property relationships in three-phase relaxor-ferroelectric terpolymers. Ferroelectrics 2021, 586, 60–81. [Google Scholar] [CrossRef]
- Zhang, S.; Neese, B.; Ren, K.; Chu, B.; Zhang, Q.M. Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. J. Appl. Phys. 2006, 100, 044113. [Google Scholar] [CrossRef]
- Ramani, R.; Das, V.; Singh, A.; Ramachandran, R.; Amarendra, G.; Alam, S. Free Volume Study on the Origin of Dielectric Constant in a Fluorine-Containing Polyimide Blend: Poly(vinylidene fluoride-co-hexafluoro propylene)/Poly(ether imide). J. Phys. Chem. B 2014, 118, 12282–12296. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.K.; Dong, Q.; Zhang, D.L.; Pei, J.Y.; Dang, Z.M. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Compos. Sci. Technol. 2022, 218, 109193. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Su, J.; Shi, Z.; Sun, S. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, B.; Neese, B.; Ren, K.; Zhou, X.; Zhang, Q.M. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer. J. Appl. Phys. 2006, 99, 044107. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, J.L.; Tian, B.B.; Liu, B.L.; Wang, X.D.; Sun, S.; Zou, Y.H.; Lin, T.; Sun, J.L.; Meng, X.J.; et al. Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers. Appl. Phys. Lett. 2014, 105, 222907. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, D.; Zhong, C.; Xiong, R.; Shi, J.; Liu, Z.; Wang, X.; Lei, Q. Surface morphology and raman analysis of the polyimide film aged under bipolar pulse voltage. Polym. Eng. Sci. 2013, 53, 1536–1541. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Gong, S.; Ren, K. Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 2018, 124, 154103. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Jiang, W.; Cao, W. Losses in ferroelectric materials. Mater. Sci. Eng. R Rep. 2015, 89, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Ju, T.; Chen, X.; Langhe, D.; Ponting, M.; Baer, E.; Zhu, L. Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Mater. 2022, 45, 494–503. [Google Scholar] [CrossRef]
- Tu, S.; Jiang, Q.; Zhang, X.; Alshareef, H.N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377. [Google Scholar] [CrossRef]
- Liu, X.J.; Zheng, M.S.; Wang, Q.; Chen, G.; Zha, J.W. Enhancement of high temperature capacitive performance of sulfone-containing polyimide by suppressing carrier transport. Appl. Phys. Lett. 2022, 121, 243902. [Google Scholar] [CrossRef]
- Dong, J.; Li, L.; Qiu, P.; Pan, Y.; Niu, Y.; Sun, L.; Pan, Z.; Liu, Y.; Tan, L.; Xu, X.; et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 2023, 35, 2211487. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, B.S.; Kim, H.; Xie, Z.; Lainé, A.; Ma, L.; Xu, T.; Yang, C.; Kwon, J.; Shelton, S.W.; et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 2023, 7, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhou, Y.; Li, Y.; Yuan, C.; Yang, M.; Fu, J.; Hu, J.; He, J.; Li, Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 2021, 42, 445–453. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Fu, J.; Zhu, Y.; Liang, J.; Cheng, S.; Hu, S.; Hu, J.; He, J.; Li, Q. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 2023, 35, 2301936. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liu, D.-D.; Zhu, Y.-J.; Zeng, T.; Jiang, B.-X.; Tang, C.-X.; Zhou, Y.; He, J.-L.; Li, Q. Effect of charge transport on electrical degradation in polypropylene/organic molecular semiconductor composites for HVDC cable insulation. Appl. Phys. Lett. 2023, 122, 112904. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Hu, R.; Chen, X.; Niu, Y.; Wang, H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem. Eng. J. 2022, 435, 135059. [Google Scholar] [CrossRef]
- Niu, Y.; Dong, J.; He, Y.; Xu, X.; Li, S.; Wu, K.; Wang, Q.; Wang, H. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy 2022, 97, 107215. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Cheng, S.; Liang, J.; Gou, B.; Zhou, J.; Fu, J.; Xie, C.; He, J.; Li, Q. Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Storage Mater. 2022, 49, 339–347. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, B.; Zhang, X.; Tan, S.; Gong, H.; Wei, X.; Zhang, Z. High energy storage density and low energy loss achieved by inserting charge traps in all organic dielectric materials. J. Mater. Chem. A 2022, 10, 16258–16267. [Google Scholar] [CrossRef]
- Zheng, W.; Ren, L.; Zhao, X.; Li, H.; Xie, Z.; Li, Y.; Wang, C.; Yu, L.; Yang, L.; Liao, R. Tuning interfacial relaxations in P (VDF-HFP) with Al2O3@ ZrO2 core-shell nanofillers for enhanced dielectric and energy storage performance. Compos. Sci. Technol. 2022, 222, 109379. [Google Scholar] [CrossRef]
- Hu, P.; Sun, W.; Fan, M.; Qian, J.; Jiang, J.; Dan, Z.; Lin, Y.; Nan, C.-W.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750. [Google Scholar] [CrossRef]
- Chi, Q.; Gao, Z.; Zhang, T.; Zhang, C.; Zhang, Y.; Chen, Q.; Wang, X.; Lei, Q. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustain. Chem. Eng. 2018, 7, 748–757. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Guo, Q.; Liu, Z.; Gong, L.; Zhang, Q.; Zhong, G.; Li, Z.; Chen, Y. Enhanced dielectric properties in polyimide nanocomposites containing barium titanate@ polydopamine core-shell nanoparticles. J. Alloys Compd. 2020, 845, 156171. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Ding, C.; Liu, X.; Liu, Y.; Wu, D.; Luo, H.; Chen, S. All-organic sandwich structured polymer dielectrics with polyimide and PVDF for high temperature capacitor application. J. Energy Storage 2023, 62, 106868. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. Binary polymer blend of ArPTU/PI with advanced comprehensive dielectric properties and ultra-high thermally stability. J. Appl. Polym. Sci. 2021, 138, 50997. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Shen, Y.; Cao, X.; Zheng, X.; Ren, K. High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers 2024, 16, 1138. https://doi.org/10.3390/polym16081138
Wang C, Shen Y, Cao X, Zheng X, Ren K. High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers. 2024; 16(8):1138. https://doi.org/10.3390/polym16081138
Chicago/Turabian StyleWang, Chengwei, Yue Shen, Xiaodan Cao, Xin Zheng, and Kailiang Ren. 2024. "High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics" Polymers 16, no. 8: 1138. https://doi.org/10.3390/polym16081138
APA StyleWang, C., Shen, Y., Cao, X., Zheng, X., & Ren, K. (2024). High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers, 16(8), 1138. https://doi.org/10.3390/polym16081138