High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization of Materials
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C.H. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020, 74, 104844. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, Q.; Allahyarov, E.; Li, Y.; Zhu, L. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl. Mater. Interfaces 2021, 13, 37939–37960. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.W.; Tian, Y.; Zheng, M.S.; Wan, B.; Yang, X.; Chen, G. High-temperature energy storage polyimide dielectric materials: Polymer multiple-structure design. Mater. Today Energy 2023, 31, 101217. [Google Scholar] [CrossRef]
- Wei, J.; Ju, T.; Huang, W.; Song, J.; Yan, N.; Wang, F.; Shen, A.; Li, Z.; Zhu, L. High dielectric constant dipolar glass polymer based on sulfonylated poly(ether ether ketone). Polymer 2019, 178, 121688. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Y.; Zhang, T.; Zhang, C.; Zhang, Y.; Zhang, Y.; Chen, Q.; Chi, Q. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater. 2020, 25, 180–192. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Popa, M.S.; Ciuprina, F.; Enache, L.; Frone, A.N.; Nicolae, C.A.; Gabor, A.R.; Trusca, R.; Raditoiu, V.; Trica, B.; et al. Role of polyaniline coating on nanosilica particles in polyvinylidene fluoride nanocomposites for energy storage. Surf. Interfaces 2023, 36, 102546. [Google Scholar] [CrossRef]
- Li, Q.; Yao, F.Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Zhong, S.-L.; Pei, J.-Y.; Zhao, Y.; Zhang, D.-L.; Liu, D.-F.; Zhang, Y.-X.; Dang, Z.-M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2021, 122, 3820–3878. [Google Scholar] [CrossRef]
- Cao, X.; Wang, C.; Han, K.; Lu, X.; Luo, N.; Ren, K. Lead-free AgNbO3/poly(vinylidene fluoride-hexafluoropropylene) antiferroelectric nanocomposite for high energy density capacitor applications. J. Phys. D Appl. Phys. 2021, 54, 405501. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.; Kong, X.; Gao, D.; Wang, Y.; Hu, T.; Zhang, L. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol. 2019, 177, 18–25. [Google Scholar] [CrossRef]
- Xie, X.; Tian, J.; Cao, X.; Li, X.; Zhang, J.; Wang, Z.; Ren, K. Ultralow-Content (Bi0.5Na0.5) TiO3–NaNbO3/PVDF-HFP Nanocomposites for Ultrahigh-Energy-Density Capacitor Applications. ACS Appl. Energy Mater. 2022, 5, 7651–7660. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, S.; Ren, K. 2D MoS2 nanosheet-based polyimide nanocomposite with high energy density for high temperature capacitor applications. Macromol. Mater. Eng. 2021, 306, 2100079. [Google Scholar] [CrossRef]
- Dai, Z.; Bao, Z.; Ding, S.; Liu, C.; Sun, H.; Wang, H.; Zhou, X.; Wang, Y.; Yin, Y.; Li, X. Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Mater. 2022, 34, 2101976. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cao, X.; Tian, J.; Yu, F.; Jiang, F.; Ren, K. Significantly enhanced energy density of nanodiamond/polyimide composites at high temperatures with ultralow nanodiamond contents. Sci. China Technol. Sci. 2023, 66, 956–965. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Xu, W.; Zhu, X.; Niu, S.; Zhang, Y.; Jiang, Z. Crosslinked polyetherimide nanocomposites with superior energy storage achieved via trace Al2O3 nanoparticles. Compos. Sci. Technol. 2022, 223, 109421. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q.; Runt, J.; Zhang, Q.M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, C.; Wang, S.; Zhu, Y.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J.; Li, Q. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 2020, 28, 255–263. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, J.; Gao, L.; Zhou, Y.; Peng, S.M.; He, J.L.; Dang, Z.M. Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Adv. 2016, 6, 33599–33605. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, T.; Zhang, Q.M. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds. Nano Energy 2019, 64, 103916. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, B.; Zhang, T.; Lu, W.; Chen, Z.; Liu, Z.; Kim, S.H.; Donovan, B.; Warzoha, R.J.; et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021, 4, 2448–2459. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. All-organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications. J. Polym. Sci. 2021, 59, 1414–1423. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Tian, J.; Tian, S.; Yu, F.; Ren, K. Composition design of BNBT-ST relaxor ferroelectric ceramics in superparaelectric state with ultrahigh energy density. Ceram. Int. 2023, 49, 27750–27757. [Google Scholar] [CrossRef]
- Feng, Q.-K.; Liu, D.-F.; Zhang, Y.-X.; Pei, J.-Y.; Zhong, S.-L.; Hu, H.-Y.; Wang, X.-J.; Dang, Z.-M. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 2022, 99, 107410. [Google Scholar] [CrossRef]
- Li, C.; Shi, L.; Yang, W.; Zhou, Y.; Li, X.; Zhang, C.; Yang, Y. All polymer dielectric films for achieving high energy density film capacitors by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea. Nanoscale Res. Lett. 2020, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, T.R.; Wübbenhorst, M.; Gerhard, R. Structure-property relationships in three-phase relaxor-ferroelectric terpolymers. Ferroelectrics 2021, 586, 60–81. [Google Scholar] [CrossRef]
- Zhang, S.; Neese, B.; Ren, K.; Chu, B.; Zhang, Q.M. Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. J. Appl. Phys. 2006, 100, 044113. [Google Scholar] [CrossRef]
- Ramani, R.; Das, V.; Singh, A.; Ramachandran, R.; Amarendra, G.; Alam, S. Free Volume Study on the Origin of Dielectric Constant in a Fluorine-Containing Polyimide Blend: Poly(vinylidene fluoride-co-hexafluoro propylene)/Poly(ether imide). J. Phys. Chem. B 2014, 118, 12282–12296. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.K.; Dong, Q.; Zhang, D.L.; Pei, J.Y.; Dang, Z.M. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Compos. Sci. Technol. 2022, 218, 109193. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Su, J.; Shi, Z.; Sun, S. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 2022, 32, 2204155. [Google Scholar] [CrossRef]
- Zhang, S.; Chu, B.; Neese, B.; Ren, K.; Zhou, X.; Zhang, Q.M. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer. J. Appl. Phys. 2006, 99, 044107. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, J.L.; Tian, B.B.; Liu, B.L.; Wang, X.D.; Sun, S.; Zou, Y.H.; Lin, T.; Sun, J.L.; Meng, X.J.; et al. Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers. Appl. Phys. Lett. 2014, 105, 222907. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, D.; Zhong, C.; Xiong, R.; Shi, J.; Liu, Z.; Wang, X.; Lei, Q. Surface morphology and raman analysis of the polyimide film aged under bipolar pulse voltage. Polym. Eng. Sci. 2013, 53, 1536–1541. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Gong, S.; Ren, K. Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 2018, 124, 154103. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Jiang, W.; Cao, W. Losses in ferroelectric materials. Mater. Sci. Eng. R Rep. 2015, 89, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Ju, T.; Chen, X.; Langhe, D.; Ponting, M.; Baer, E.; Zhu, L. Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Mater. 2022, 45, 494–503. [Google Scholar] [CrossRef]
- Tu, S.; Jiang, Q.; Zhang, X.; Alshareef, H.N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377. [Google Scholar] [CrossRef]
- Liu, X.J.; Zheng, M.S.; Wang, Q.; Chen, G.; Zha, J.W. Enhancement of high temperature capacitive performance of sulfone-containing polyimide by suppressing carrier transport. Appl. Phys. Lett. 2022, 121, 243902. [Google Scholar] [CrossRef]
- Dong, J.; Li, L.; Qiu, P.; Pan, Y.; Niu, Y.; Sun, L.; Pan, Z.; Liu, Y.; Tan, L.; Xu, X.; et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 2023, 35, 2211487. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, B.S.; Kim, H.; Xie, Z.; Lainé, A.; Ma, L.; Xu, T.; Yang, C.; Kwon, J.; Shelton, S.W.; et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 2023, 7, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhou, Y.; Li, Y.; Yuan, C.; Yang, M.; Fu, J.; Hu, J.; He, J.; Li, Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 2021, 42, 445–453. [Google Scholar] [CrossRef]
- Yang, M.; Wang, S.; Fu, J.; Zhu, Y.; Liang, J.; Cheng, S.; Hu, S.; Hu, J.; He, J.; Li, Q. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 2023, 35, 2301936. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liu, D.-D.; Zhu, Y.-J.; Zeng, T.; Jiang, B.-X.; Tang, C.-X.; Zhou, Y.; He, J.-L.; Li, Q. Effect of charge transport on electrical degradation in polypropylene/organic molecular semiconductor composites for HVDC cable insulation. Appl. Phys. Lett. 2023, 122, 112904. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Hu, R.; Chen, X.; Niu, Y.; Wang, H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem. Eng. J. 2022, 435, 135059. [Google Scholar] [CrossRef]
- Niu, Y.; Dong, J.; He, Y.; Xu, X.; Li, S.; Wu, K.; Wang, Q.; Wang, H. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy 2022, 97, 107215. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Cheng, S.; Liang, J.; Gou, B.; Zhou, J.; Fu, J.; Xie, C.; He, J.; Li, Q. Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Storage Mater. 2022, 49, 339–347. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, B.; Zhang, X.; Tan, S.; Gong, H.; Wei, X.; Zhang, Z. High energy storage density and low energy loss achieved by inserting charge traps in all organic dielectric materials. J. Mater. Chem. A 2022, 10, 16258–16267. [Google Scholar] [CrossRef]
- Zheng, W.; Ren, L.; Zhao, X.; Li, H.; Xie, Z.; Li, Y.; Wang, C.; Yu, L.; Yang, L.; Liao, R. Tuning interfacial relaxations in P (VDF-HFP) with Al2O3@ ZrO2 core-shell nanofillers for enhanced dielectric and energy storage performance. Compos. Sci. Technol. 2022, 222, 109379. [Google Scholar] [CrossRef]
- Hu, P.; Sun, W.; Fan, M.; Qian, J.; Jiang, J.; Dan, Z.; Lin, Y.; Nan, C.-W.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750. [Google Scholar] [CrossRef]
- Chi, Q.; Gao, Z.; Zhang, T.; Zhang, C.; Zhang, Y.; Chen, Q.; Wang, X.; Lei, Q. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustain. Chem. Eng. 2018, 7, 748–757. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Guo, Q.; Liu, Z.; Gong, L.; Zhang, Q.; Zhong, G.; Li, Z.; Chen, Y. Enhanced dielectric properties in polyimide nanocomposites containing barium titanate@ polydopamine core-shell nanoparticles. J. Alloys Compd. 2020, 845, 156171. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Ding, C.; Liu, X.; Liu, Y.; Wu, D.; Luo, H.; Chen, S. All-organic sandwich structured polymer dielectrics with polyimide and PVDF for high temperature capacitor application. J. Energy Storage 2023, 62, 106868. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. Binary polymer blend of ArPTU/PI with advanced comprehensive dielectric properties and ultra-high thermally stability. J. Appl. Polym. Sci. 2021, 138, 50997. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Shen, Y.; Cao, X.; Zheng, X.; Ren, K. High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers 2024, 16, 1138. https://doi.org/10.3390/polym16081138
Wang C, Shen Y, Cao X, Zheng X, Ren K. High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers. 2024; 16(8):1138. https://doi.org/10.3390/polym16081138
Chicago/Turabian StyleWang, Chengwei, Yue Shen, Xiaodan Cao, Xin Zheng, and Kailiang Ren. 2024. "High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics" Polymers 16, no. 8: 1138. https://doi.org/10.3390/polym16081138
APA StyleWang, C., Shen, Y., Cao, X., Zheng, X., & Ren, K. (2024). High Energy Density in All-Organic Polyimide-Based Composite Film by Doping of Polyvinylidene Fluoride-Based Relaxor Ferroelectrics. Polymers, 16(8), 1138. https://doi.org/10.3390/polym16081138