Oriented Three-Dimensional Skeletons Assembled by Si3N4 Nanowires/AlN Particles as Fillers for Improving Thermal Conductivity of Epoxy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Process of Preparing Si3N4NWs
2.3. Preparation of Si3N4NWs/AlN Directional Skeletons
2.4. Preparation of the Si3N4NWs/AlN/EP Composites
2.5. Characterizations
3. Results and Discussion
3.1. Characterization of Si3N4NWs
3.2. Characterization of Si3N4NWs/AlN/EP Thermal Conductivity Skeleton
3.3. Thermal Conductivity of the Si3N4NWs/AlN/EP Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.L.; Sun, J.J.; Yao, Y.M.; Sun, R.; Xu, J.-B.; Wong, C.-P. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity. ACS Nano 2017, 11, 5167–5178. [Google Scholar] [CrossRef]
- Liu, Z.T.; Zhao, S.Q.; Tian, Y.; Zhou, J. Improvement in mechanical properties in AlN–h-BN composites with high thermal conductivity. J. Adv. Ceram. 2019, 8, 72–78. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.H.; Bian, H.Y.; Wu, W.B.; Xiao, H.N.; Dai, H.Q. Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. Polymers 2019, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.M.; Feng, J.C. Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement. Compos. Sci. Technol. 2019, 170, 135–140. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F.; Liu, W.; Huang, Y.; Du, L.B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Essam, B.M.; Mohammed, A.T. Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. Int. J. Min. Met. Mater. 2021, 28, 475–486. [Google Scholar]
- Xu, X.F.; Chen, J.; Zhou, J.; Li, B.W. Thermal Conductivity of Polymers and Their Nanocomposites. Adv. Mater. 2018, 30, e1705544. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.H.; Sun, H.R.; Zhao, J.Q.; Cheng, Z.M.; Kang, X.H. MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors. Int. J. Min. Met. Mater. 2021, 28, 1735–1744. [Google Scholar] [CrossRef]
- Zhang, D.W.; Liu, F.S.; Wang, S.; Yan, M.X.; Hu, X.; Xu, M.Y. D-GQDs Modified Epoxy Resin Enhances the Thermal Conductivity of AlN/Epoxy Resin Thermally Conductive Composites. Polymers 2021, 13, 4074. [Google Scholar] [CrossRef]
- Slack, G.A.; Tanzilli, R.A.; Pohl, R.O.; Vandersande, J.W. The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids 1987, 48, 641–647. [Google Scholar] [CrossRef]
- Wei, Z.L.; Xie, W.Q.; Ge, B.Z.; Zhang, Z.J.; Yang, W.L.; Xia, H.Y.; Wang, B.; Jin, H.Y.; Gao, N.K. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos. Sci. Technol. 2020, 199, 108304. [Google Scholar] [CrossRef]
- Celebi, M.; Canakci, A.; Güler, O.; Özkaya, S.; Karabacak, A.H.; Arpacı, K.A. Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing. JOM 2022, 74, 4449–4461. [Google Scholar] [CrossRef]
- Xu, J.K.; Liu, Z.T.; Zhang, J.; Li, F.; Qin, X.W.; He, S.; Xie, Z.P. In situ fabrication of continuously graded Si3N4 ceramics via DC field-assisted hot pressing. Scr. Mater. 2022, 213, 114600. [Google Scholar] [CrossRef]
- Hao, X.; Wan, S.Q.; Kang, W.W.; Zhao, J.L.; Han, S.M.; Peng, D.Y.; Yang, P.; Wang, Q. Carbothermal synthesis of high-aspect-ratio AlN whiskers using graphite felt as carbon source. Ceram. Int. 2022, 48, 9842–9847. [Google Scholar] [CrossRef]
- Volodchenko, A.A.; Vorontsov, V.M.; Cherepanova, I. Effective Non-Autoclave Silicate Blocks of Casting Molding Process Based on Unconventional Aluminosilicate Raw Materials. Mater. Sci. Forum 2019, 974, 55–60. [Google Scholar] [CrossRef]
- Wu, N.; Che, S.; Shen, P.D.; Chen, N.; Chen, F.J.; Ma, G.; Liu, H.C.; Yang, W.; Wang, X.B.; Li, F.Y. A binder-free ice template method for vertically aligned 3D boron nitride polymer composites towards thermal management. J. Colloid Interface Sci. 2023, 647, 43–51. [Google Scholar] [CrossRef]
- Pan, D.; Dong, J.W.; Yang, G.; Su, F.M.; Chang, B.B.; Liu, C.T.; Zhu, Y.-C.; Guo, Z.H. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater. 2021, 5, 58–70. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, D.; Meggs, C.; Button, T.W. Porous Al2O3-ZrO2 composites fabricated by an ice template method. Scr. Mater. 2010, 62, 466–468. [Google Scholar] [CrossRef]
- Hu, J.B.; Wei, Z.L.; Ge, B.Z.; Zhao, L.; Peng, K.; Shi, Z.Q. AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion. J. Mater. Chem. A 2023, 11, 10727–10737. [Google Scholar] [CrossRef]
- Niu, M.Y.; Zhao, Z.; Wang, B.K.; Yu, C.; Li, M.Y.; Hu, J.J.; Yue, M.; Lu, Q.P.; Wang, Q. Silver nanoparticle-decorated AlN whiskers hybrids for enhancing the thermal conductivity of nanofibrillated cellulose composite films. Chem. Commun. 2023, 59, 12577–12580. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.L.; Ye, L.; Yu, S.H.; Li, H.; Sun, R.; Xu, J.B.; Wong, C.-P. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 2015, 7, 6774–6781. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.R.; Wang, S.; Chen, G.K.; Zhang, Q.; Wu, K.; Shi, J.; Liang, L.Y.; Lu, M.G. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film. Compos. Sci. Technol. 2018, 168, 287–295. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Niu, H.T.; Wu, L.Y.; He, X.H.; Xu, T.; Wang, N.Y.; Yao, Y.G. An electrospinning-electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos. Part B-Eng. 2022, 230, 109505. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.Y.; Sun, B.; Jiang, P.K. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2019, 13, 337–345. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, Q.X.; Liu, D.; Chen, C.; Chen, Z.Q.; Hao, J.; Li, Y.W.; Zhang, J.; Naebe, M.; Lei, W.W. High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 2018, 10, 16868–16872. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, M.H.; Miao, Z.C.; Zhao, Y.L.; Song, Y.N.; Yu, J.H.; Wu, Z.X.; Li, J.T.; Wang, W.; Li, Y.; et al. Ice-templated graphene in-situ loaded boron nitride aerogels for polymer nanocomposites with high thermal management capability. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107005. [Google Scholar] [CrossRef]
- Zhao, B.T.; Chen, K.X.; Sun, S.Y.; Zhang, J.; Cui, W.; Xie, Z.P.; Liu, G.H. Crystalline boron nitride nanosheets by sonication-assisted hydrothermal exfoliation. J. Adv. Ceram. 2019, 8, 72–78. [Google Scholar]
- Han, G.J.; Xue, P.W.; Cai, Z.H.; Feng, Y.Z.; Liu, C.T.; Shen, C.Y. One-step exfoliation and deprotonation of ANF/BNNS suspension for constructing 3D vertically aligned skeleton in epoxy-based thermal management composites. Sci. China Technol. Sci. 2022, 65, 2675–2686. [Google Scholar] [CrossRef]
- Shen, H.; Guo, J.; Wang, H.; Zhao, N.; Xu, J. Bioinspired Modification of h-BN for High Thermal Conductive Composite Films with Aligned Structure. ACS Appl. Mater. Interfaces 2015, 7, 5701–5708. [Google Scholar] [CrossRef]
- Bouville, F.; Deville, S. Dispersion of Boron Nitride Powders in Aqueous Suspensions with Cellulose. J. Am. Ceram. Soc. 2014, 97, 394–398. [Google Scholar] [CrossRef]
- Ciesielski, A.; Samori, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Wu, Y.Z.; Hao, X.P. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. Crystengcomm 2013, 15, 1782–1786. [Google Scholar] [CrossRef]
- Chen, S.H.; Xu, R.Z.; Liu, J.M.; Zou, X.L.; Qiu, L.; Kang, F.Y.; Liu, B.L.; Cheng, H.-M. Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation. Adv. Mater. 2019, 31, 1804810. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, A.R.; Ladani, R.B.; Zavabeti, A.; Daeneke, T.; Wu, S.Y.; Kinloch, A.J.; Wang, C.H.; Kalantar-Zadeh, K.; Mouritz, A.P. Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. Compos. Sci. Technol. 2019, 181, 107708. [Google Scholar] [CrossRef]
- Zhao, Z.; Peng, D.Y.; Zhi, Y.H.; Hao, X.; Wan, S.Q.; Yue, M.; Kuang, J.L.; Xuan, W.W.; Zhu, L.F.; Cao, W.B.; et al. Synergistic effects of oriented AlN skeletons and 1D SiC nanowires for enhancing the thermal conductivity of epoxy composites. J. Alloys Compd. 2023, 963, 171244. [Google Scholar] [CrossRef]
- Wan, S.Q.; Hao, X.; Zhu, L.F.; Yu, C.; Li, M.Y.; Zhao, Z.; Kuang, J.L.; Yue, M.; Lu, Q.P.; Cao, W.B.; et al. Enhanced In-Plane Thermal Conductivity and Mechanical Strength of Flexible Films by Aligning and Interconnecting Si3N4 Nanowires. ACS Appl. Mater. Interfaces 2023, 15, 32885–32894. [Google Scholar] [CrossRef]
- Yao, Y.M.; Zhu, X.D.; Zeng, X.L.; Sun, R.; Xu, J.B.; Wong, C.-P. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites. ACS Appl. Mater. Interfaces 2018, 10, 9669–9678. [Google Scholar] [CrossRef]
- Wu, W.J.; Liu, H.W.; Wang, Z.Y.; Lv, P.; Hu, E.T.; Zheng, J.J.; Yu, K.H.; Wei, W. Formation of thermal conductive network in boron nitride/polyvinyl alcohol by ice-templated self-assembly. Ceram. Int. 2021, 47, 33926–33929. [Google Scholar] [CrossRef]
- Hao, X.; Wan, S.Q.; Zhao, Z.; Zhu, L.F.; Peng, D.Y.; Yue, M.; Kuang, J.L.; Cao, W.B.; Liu, G.H.; Wang, Q. Enhanced Thermal Conductivity of Epoxy Composites by Introducing 1D AlN Whiskers and Constructing Directionally Aligned 3D AlN Filler Skeletons. ACS Appl. Mater. Interfaces 2023, 15, 2124–2133. [Google Scholar] [CrossRef]
- Latif, I.; Al-Abodi, E.E.; Badri, D.H.; Khafagi, J.A. Preparation, Characterization and Electrical Study of (Carboxymethylated Polyvinyl Alcohol/ZnO) Nanocomposites. J. Polym. Sci. 2012, 2, 135–140. [Google Scholar] [CrossRef]
- Wu, K.; Fang, J.C.; Ma, J.R.; Huang, R.; Chai, S.G.; Chen, F.; Fu, Q. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber. ACS Appl. Mater. Interfaces 2017, 9, 30035–30045. [Google Scholar] [CrossRef]
- Zhuang, Y.F.; Zheng, K.; Cao, X.Y.; Fan, Q.R.; Ye, G.; Lu, J.X.; Zhang, J.N.; Ma, Y.M. Flexible Graphene Nanocomposites with Simultaneous Highly Anisotropic Thermal and Electrical Conductivities Prepared by Engineered Graphene with Flat Morphology. ACS Nano 2020, 14, 11733–11742. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Bai, L.Y.; Tian, H.F.; Li, X.F.; Yuan, F.L. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106685. [Google Scholar] [CrossRef]
- Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 2010, 32, 5705–5712. [Google Scholar] [CrossRef]
- Pan, D.; Yang, G.; Abo-Dief, H.M.; Dong, J.W.; Su, F.M.; Liu, C.T.; Li, Y.F.; Xu, B.B.; Murugadoss, V.; Naik, N.; et al. Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. Nano-Micro Lett. 2022, 14, 215–233. [Google Scholar] [CrossRef]
- Yang, X.T.; Liang, C.B.; Ma, T.B.; Guo, Y.Q.; Kong, J.; Gu, J.W.; Chen, M.J.; Zhu, J.H. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 2018, 1, 207–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wan, S.; Niu, M.; Li, M.; Yu, C.; Zhao, Z.; Xuan, W.; Yue, M.; Cao, W.; Wang, Q. Oriented Three-Dimensional Skeletons Assembled by Si3N4 Nanowires/AlN Particles as Fillers for Improving Thermal Conductivity of Epoxy Composites. Polymers 2023, 15, 4429. https://doi.org/10.3390/polym15224429
Wang B, Wan S, Niu M, Li M, Yu C, Zhao Z, Xuan W, Yue M, Cao W, Wang Q. Oriented Three-Dimensional Skeletons Assembled by Si3N4 Nanowires/AlN Particles as Fillers for Improving Thermal Conductivity of Epoxy Composites. Polymers. 2023; 15(22):4429. https://doi.org/10.3390/polym15224429
Chicago/Turabian StyleWang, Baokai, Shiqin Wan, Mengyang Niu, Mengyi Li, Chang Yu, Zheng Zhao, Weiwei Xuan, Ming Yue, Wenbin Cao, and Qi Wang. 2023. "Oriented Three-Dimensional Skeletons Assembled by Si3N4 Nanowires/AlN Particles as Fillers for Improving Thermal Conductivity of Epoxy Composites" Polymers 15, no. 22: 4429. https://doi.org/10.3390/polym15224429