# Pyrolysis Kinetics Analysis and Prediction for Carbon Fiber-Reinforced Epoxy Composites

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory

#### 2.1. Kinetic Analysis

#### 2.2. Model of Pyrolysis Prediction

## 3. Experimental Section

#### 3.1. Materials

_{6.}After lay-up, the prepreg stacks were cured for 180 min at a temperature of 120 °C and 3 standard atmospheric pressures in the autoclave.

#### 3.2. Experimental Procedures

## 4. Results and Discussion

#### 4.1. Thermal Decomposition Data Analysis

#### 4.2. Determination of Kinetic Triplet

#### 4.3. Validation of Pyrolysis Prediction Model

#### 4.4. Influence of Time Step on Prediction Accuracy

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Mouritz, A.P.; Mathys, Z.; Gibson, A.G. Heat release of polymer composites in fire. Compos. Part A Appl. Sci. Manuf.
**2006**, 37, 1040–1054. [Google Scholar] [CrossRef] - Domingo, R. Aviation Maintenance Technician Handbook-Airframe, Volume 1; FAA-H-8083-31A; US Department of Transportation: Oklahoma City, OK, USA, 2018. [Google Scholar]
- Hirano, Y.; Katsumata, S.; Iwahori, Y.; Todoroki, A. Artificial lightning testing on graphite/epoxy composite laminate. Compos. Part A Appl. Sci. Manuf.
**2010**, 41, 1461–1470. [Google Scholar] [CrossRef] - Gou, J.; Tang, Y.; Liang, F.; Zhao, Z.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B Eng.
**2010**, 41, 192–198. [Google Scholar] [CrossRef] - Lee, J.; Gharghabi, P.; Boushab, D.; Ricks, T.M.; Lacy, T.E.; Pittman, C.U.; Mazzola, M.S.; Velicki, A. Artificial lightning strike tests on PRSEUS panels. Compos. Part B Eng.
**2018**, 154, 467–477. [Google Scholar] [CrossRef] - Wang, F.; Ma, X.; Zhang, Y.; Jia, S. Lightning damage testing of aircraft composite-reinforced panels and its metal protection structures. Appl. Sci.
**2018**, 8, 1791. [Google Scholar] [CrossRef] - Tranchard, P.; Duquesne, S.; Samyn, F.; Estèbe, B.; Bourbigot, S. Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J. Anal. Appl. Pyrolysis.
**2017**, 126, 14–21. [Google Scholar] [CrossRef] - Zhang, Z.; Wang, C.; Huang, G.; Liu, H.; Yang, S.; Zhang, A. Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. J. Hazard. Mater.
**2018**, 357, 73–80. [Google Scholar] [CrossRef] [PubMed] - Sihn, S.; Ehlert, G.J.; Roy, A.K.; Vernon, J.P. Identifying unified kinetic model parameters for thermal decomposition of polymer matrix composites. J. Compos. Mater.
**2019**, 53, 2875–2890. [Google Scholar] [CrossRef] - Sihn, S.; Ehlert, G.J.; Roy, A.K.; Vernon, J.P. A unified kinetic model for multistage thermal decomposition of polymer matrix composites in air. Mater. Today Commun.
**2020**, 24, 101095. [Google Scholar] [CrossRef] - Carpier, Y.; Alia, A.; Vieille, B.; Barbe, F. Experiments based analysis of thermal decomposition kinetics model. Case of carbon fibers PolyPhenylene Sulfide composites. Polym. Degrad. Stab.
**2021**, 186, 109525. [Google Scholar] [CrossRef] - Li, H.; Wang, N.; Han, X.; Yuan, H.; Xie, J. Mechanism identification and kinetics analysis of thermal degradation for carbon fiber/epoxy resin. Polymers
**2021**, 13, 569. [Google Scholar] [CrossRef] [PubMed] - Zheng, F.; Ren, Z.; Xu, B.; Wan, K.; Cai, J.; Yang, J.; Zhang, T.; Wang, P.; Niu, B.; Zhang, Y.; et al. Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations. J. Anal. Appl. Pyrolysis.
**2021**, 157, 105222. [Google Scholar] [CrossRef] - Gibson, A.G.; Wu, Y.S.; Chandler, H.W.; Wilcox, J.A.D.; Bettess, P. Model for the thermal performance of thick composite laminates in hydrocarbon fires. Rev. L'institute Fr. Pet.
**1995**, 50, 69–74. [Google Scholar] [CrossRef] - Henderson, J.B.; Wiebelt, J.A.; Tant, M.R. A Model for the Thermal Response of Polymer Composite Materials with Experimental Verification. J. Compos. Mater.
**1985**, 19, 579–595. [Google Scholar] [CrossRef] - Dodds, N.; Gibson, A.G.; Dewhurst, D.; Davies, J.M. Fire behaviour of composite laminates. Compos. Part A Appl. Sci. Manuf.
**2000**, 31, 689–702. [Google Scholar] [CrossRef] - Galgano, A.; Di Blasi, C.; Branca, C.; Milella, E. Thermal response to fire of a fibre-reinforced sandwich panel: Model formulation, selection of intrinsic properties and experimental validation. Polym. Degrad. Stab.
**2009**, 94, 1267–1280. [Google Scholar] [CrossRef] - Mouritz, A.P.; Feih, S.; Kandare, E.; Mathys, Z.; Gibson, A.G.; Jardin, P.E.D.; Case, S.W.; Lattimer, B.Y. Review of fire structural modelling of polymer composites. Compos. Part A Appl. Sci. Manuf.
**2009**, 40, 1800–1814. [Google Scholar] [CrossRef] - Zhuge, J.; Gou, J.; Chen, R.H.; Kapat, J. Finite element modeling of post-fire flexural modulus of fiber reinforced polymer composites under constant heat flux. Compos. Part A Appl. Sci. Manuf.
**2012**, 43, 665–674. [Google Scholar] [CrossRef] - Rizk, G.; Nahas, R.; Khalil, K.; Challita, G.; Legrand, V.; Casari, P.; Jacquemin, F. Durability of composite assemblies under extreme conditions: Thermomechanical damage prediction of a double-lap bonded composite assembly subject to impact and high temperature. Compos. Struct.
**2019**, 213, 58–70. [Google Scholar] [CrossRef] - Li, H.; Wang, N.; Han, X.; Fan, B.; Feng, Z.; Guo, S. Simulation of thermal behavior of glass fiber/phenolic composites exposed to heat flux on one side. Materials
**2020**, 13, 421. [Google Scholar] [CrossRef] - Loh, T.W.; Kandare, E.; Nguyen, K.T.Q. The effect of thickness on the compression failure of composite laminates in fire. Compos. Struct.
**2022**, 286, 115334. [Google Scholar] [CrossRef] - Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta
**2011**, 520, 1–19. [Google Scholar] [CrossRef] - Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun.
**2006**, 27, 1515–1532. [Google Scholar] [CrossRef] - Feih, S.; Mathys, Z.; Gibson, A.G.; Mouritz, A.P. Modelling the compression strength of polymer laminates in fire. Compos. Part A Appl. Sci. Manuf.
**2007**, 38, 2354–2365. [Google Scholar] [CrossRef] - Kandare, E.; Kandola, B.K.; McCarthy, E.D.; Myler, P.; Edwards, G.; Jifeng, Y.; Wang, Y.C. Fiber-reinforced epoxy composites exposed to high temperature environments. Part II: Modeling mechanical property degradation. J. Compos. Mater.
**2011**, 45, 1511–1521. [Google Scholar] [CrossRef] - Summers, P.T.; Lattimer, B.Y.; Case, S.; Feih, S. Predicting compression failure of composite laminates in fire. Compos. Part A Appl. Sci. Manuf.
**2012**, 43, 773–782. [Google Scholar] [CrossRef] - Anjang, A.; Chevali, V.S.; Kandare, E.; Mouritz, A.P.; Feih, S. Tension modelling and testing of sandwich composites in fire. Compos. Struct.
**2014**, 113, 437–445. [Google Scholar] [CrossRef] - FWang, S.; Ding, N.; Liu, Z.Q.; Ji, Y.Y.; Yue, Z.F. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike. Compos. Struct.
**2014**, 117, 222–233. [Google Scholar] [CrossRef] - FWang, S.; Yu, X.S.; Jia, S.Q.; Li, P. Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike. Aerosp. Sci. Technol.
**2018**, 75, 304–314. [Google Scholar] [CrossRef] - Flynn, J.H. Thermal analysis kinetics—Past, present and future. Thermochim. Acta
**1992**, 203, 519–526. [Google Scholar] [CrossRef] - Flynn, J.H. The “Temperature Integral”—Its use and abuse. Thermochim. Acta
**1997**, 300, 83–92. [Google Scholar] [CrossRef] - Bai, Y.; Keller, T. Time dependence of material properties of frp composites in fire. J. Compos. Mater.
**2009**, 43, 2469–2484. [Google Scholar] [CrossRef] - Dong, Q.; Guo, Y.; Sun, X.; Jia, Y. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike. Polymer
**2015**, 56, 385–394. [Google Scholar] [CrossRef] - Dong, Q.; Guo, Y.; Chen, J.; Yao, X.; Yi, X.; Ping, L.; Jia, Y. Influencing factor analysis based on electrical-thermal-pyrolytic simulation of carbon fiber composites lightning damage. Compos. Struct.
**2016**, 140, 1–10. [Google Scholar] [CrossRef] - Dong, Q.; Wan, G.; Ping, L.; Guo, Y.; Yi, X.; Jia, Y. Coupled thermal-mechanical damage model of laminated carbon fiber/resin composite subjected to lightning strike. Compos. Struct.
**2018**, 206, 185–193. [Google Scholar] [CrossRef] - Dong, Q.; Wan, G.; Guo, Y.; Zhang, L.; Wei, X.; Yi, X.; Jia, Y. Damage analysis of carbon fiber composites exposed to combined lightning current components D and C. Compos. Sci. Technol.
**2019**, 179, 1–9. [Google Scholar] [CrossRef] - Kamiyama, S.; Hirano, Y.; Ogasawara, T. Delamination analysis of CFRP laminates exposed to lightning strike considering cooling process. Compos. Struct.
**2018**, 196, 55–62. [Google Scholar] [CrossRef] - Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B
**2006**, 110, 17315–17328. [Google Scholar] [CrossRef] - Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp.
**2007**, 6, 183–195. [Google Scholar] [CrossRef] - Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn.
**1965**, 38, 1881–1886. [Google Scholar] [CrossRef] - Flynn, J.H.; Wall, L.A. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem.
**1966**, 70, 487. [Google Scholar] [CrossRef] - Flynn, J.H. The isoconversional method for determination of energy of activation at constant heating rates. J. Therm. Anal.
**1983**, 27, 95–102. [Google Scholar] [CrossRef] - Akahira, T.; Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.)
**1971**, 16, 22–31. [Google Scholar] - Starink, M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta
**2003**, 404, 163–176. [Google Scholar] [CrossRef] - Criado, J.M. Kinetic analysis of DTG data from master curves. Thermochim. Acta
**1978**, 24, 186–189. [Google Scholar] [CrossRef] - Pérez-Maqueda, L.A.; Ortega, A.; Criado, J.M. The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochim. Acta
**1996**, 277, 165–173. [Google Scholar] [CrossRef] - Das, P.; Tiwari, P. Thermal degradation kinetics of plastics and model selection. Thermochim. Acta
**2017**, 654, 191–202. [Google Scholar] [CrossRef] - Málek, J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim. Acta
**1989**, 138, 337–346. [Google Scholar] [CrossRef] - Málek, J. The kinetic analysis of non-isothermal data. Thermochim. Acta
**1992**, 200, 257–269. [Google Scholar] [CrossRef] - Vyazovkin, S.; Sbirrazzuoli, N. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules
**1996**, 29, 1867–1873. [Google Scholar] [CrossRef] - Granado, L.; Sbirrazzuoli, N. Isoconversional computations for nonisothermal kinetic predictions. Thermochim. Acta
**2021**, 697, 2–7. [Google Scholar] [CrossRef] - Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta
**2020**, 689, 178597. [Google Scholar] [CrossRef]

**Figure 1.**TG curves for USN15000/9A16/RC33 composite materials measured in N

_{2}environment at various heating rates. Inset: corresponding DTG curves.

**Figure 2.**TG and temperature curves for USN15000/9A16/RC33 composite materials measured in N2 environment at the combined heating rates.

**Figure 3.**Isoconversional curves adopted for calculation of the activation energy with the (

**a**) FWO method, (

**b**) KAS method, (

**c**) Starink method, and (

**d**) Friedman method.

**Figure 4.**Evolution of the activation energy of USN15000/9A16/RC33 thermal decomposition using various isoconversional approaches.

**Figure 5.**Master plots of different reaction models and experimental data in terms of USN15000/9A16/RC33 thermal decomposition.

**Figure 6.**Regression coefficient (R

^{2}) between experimental data and master plots of various reaction models. The reaction model with regression coefficient less than zero was ignored.

**Figure 7.**Comparison between experimental and theoretical curves under different heating rates by (

**a**) 10 K/min, (

**b**) 20 K/min, (

**c**) 30 K/min, and (

**d**) 40 K/min.

**Figure 8.**Comparison between experimental and theoretical curves under combined heating rates of 10, 20, and 40 K/min. The dashed line represents the temperature at which the heating rate undergoes a transition.4.4. Influence of Time Step on Prediction Accuracy.

**Figure 9.**Comparison between theoretical and prediction curves under different heating rates by (

**a**) 10 K/min, (

**b**) 20 K/min, (

**c**) 30 K/min, and (

**d**) 40 K/min.

Reaction Model | Model Code | f (α) | g (α) |
---|---|---|---|

Power law | P2 | $2{\alpha}^{1/2}$ | ${\alpha}^{1/2}$ |

Power law | P3 | $3{\alpha}^{2/3}$ | ${\alpha}^{1/3}$ |

Power law | P4 | $4{\alpha}^{3/4}$ | ${\alpha}^{1/4}$ |

Avrami–Erofeyev | A2 | $2\left(1-\alpha \right){\left[-\mathrm{ln}\left(1-\alpha \right)\right]}^{1/2}$ | ${[-\mathrm{ln}\left(1-\alpha \right)]}^{1/2}$ |

Avrami–Erofeyev | A3 | $3\left(1-\alpha \right){[-\mathrm{ln}\left(1-\alpha \right)]}^{2/3}$ | ${[-\mathrm{ln}\left(1-\alpha \right)]}^{1/3}$ |

Avrami–Erofeyev | A4 | $4\left(1-\alpha \right){[-\mathrm{ln}\left(1-\alpha \right)]}^{3/4}$ | ${[-\mathrm{ln}\left(1-\alpha \right)]}^{1/4}$ |

Contracting cylinder | R2 | $2{\left(1-\alpha \right)}^{1/2}$ | $1-{\left(1-\alpha \right)}^{1/2}$ |

Contracting sphere | R3 | $3{\left(1-\alpha \right)}^{2/3}$ | $1-{\left(1-\alpha \right)}^{1/3}$ |

One-dimensional diffusion | D1 | $1/2{\alpha}^{-1}$ | ${\alpha}^{2}$ |

Two-dimensional diffusion | D2 | ${[-\mathrm{ln}\left(1-\alpha \right)]}^{-1}$ | $\left(1-\alpha \right)\mathrm{ln}\left(1-\alpha \right)+\alpha $ |

Three-dimensional diffusion | D3 | $3/2{\left(1-\alpha \right)}^{2/3}{[1-{\left(1-\alpha \right)}^{1/3}]}^{-1}$ | ${[1-{\left(1-\alpha \right)}^{1/3}]}^{2}$ |

Ginstling–Brounshtein | D4 | $3/2{\left[{\left(1-\alpha \right)}^{-1/3}-1\right]}^{-1}$ | $1-\left(2\alpha /3\right)-{\left(1-\alpha \right)}^{2/3}$ |

First-order | F1 | $1-\alpha $ | $-\mathrm{ln}\left(1-\alpha \right)$ |

Second-order | F2 | ${\left(1-\alpha \right)}^{2}$ | ${\left(1-\alpha \right)}^{-1}-1$ |

Third-order | F3 | ${\left(1-\alpha \right)}^{3}$ | $[{\left(1-\alpha \right)}^{-2}-1]/2$ |

Method | Expression | ||
---|---|---|---|

Isoconversional methods | Differential | Friedman | $\mathrm{ln}{\left(\frac{d\alpha}{dt}\right)}_{\alpha ,i}=\mathrm{ln}{\left(\beta \frac{d\alpha}{dT}\right)}_{\alpha ,i}=\mathrm{ln}\left[{A}_{\alpha}f\left(\alpha \right)\right]-\frac{{E}_{\alpha}}{R{T}_{\alpha ,i}}$ |

Integral | Flynn–Wall–Ozawa (FWO) | $\mathrm{ln}\left({\beta}_{i}\right)=\mathrm{Const}-1.052\left(\frac{{E}_{\alpha}}{R{T}_{\alpha ,i}}\right)$ | |

Kissinger–Akahira–Sunose (KAS) | $\mathrm{ln}\left(\frac{{\beta}_{i}}{{T}_{\alpha ,i}^{2}}\right)=\mathrm{Const}-\frac{{E}_{\alpha}}{R{T}_{\alpha ,i}}$ | ||

Starink | $\mathrm{ln}\left(\frac{{\beta}_{i}}{{T}_{\alpha ,i}^{1.92}}\right)=\mathrm{Const}-1.0008\left(\frac{{E}_{\alpha}}{R{T}_{\alpha ,i}}\right)$ |

Heating Rate | Isoconversional Method | ${\mathit{E}}_{\mathit{\alpha}}$ (kJ/mol) | ${\mathit{A}}_{\mathit{\alpha}}$ (min^{−1}) | f (α) | |
---|---|---|---|---|---|

Equation (3) (Differential) | Equation (8) (Málek) | ||||

10 K/min | FWO | 146.4–232.7 | $4.5\times {10}^{10}$$\u20136.4\times {10}^{16}$ | $4.6\times {10}^{10}$$\u20132.4\times {10}^{17}$ | ${\left(1-\alpha \right)}^{2}$ |

KAS | 143.1–232.6 | $2.4\times {10}^{10}$$\u20136.3\times {10}^{16}$ | $2.5\times {10}^{10}$$\u20132.4\times {10}^{17}$ | ||

Starink | 143.4–232.9 | $2.6\times {10}^{10}$$\u20136.7\times {10}^{16}$ | $2.7\times {10}^{10}$$\u20132.5\times {10}^{17}$ | ||

Friedman | 156.0–371.9 | $2.7\times {10}^{11}$$\u20137.7\times {10}^{26}$ | $2.6\times {10}^{11}$$\u20131.3\times {10}^{28}$ | ||

20 K/min | FWO | 146.4–232.7 | $4.7\times {10}^{10}$$\u20131.0\times {10}^{17}$ | $5.0\times {10}^{10}$$\u20131.9\times {10}^{17}$ | |

KAS | 143.1–232.6 | $2.6\times {10}^{10}$$\u20131.0\times {10}^{17}$ | $2.8\times {10}^{10}$$\u20131.9\times {10}^{17}$ | ||

Starink | 143.4–232.9 | $2.7\times {10}^{10}$$\u20131.0\times {10}^{17}$ | $2.9\times {10}^{10}$$\u20132.0\times {10}^{17}$ | ||

Friedman | 156.0–371.9 | $2.7\times {10}^{11}$$\u20138.4\times {10}^{26}$ | $2.7\times {10}^{11}$$\u20135.8\times {10}^{27}$ | ||

30 K/min | FWO | 146.4–232.7 | $4.5\times {10}^{10}$$\u20131.3\times {10}^{17}$ | $5.0\times {10}^{10}$$\u20131.6\times {10}^{17}$ | |

KAS | 143.1–232.6 | $2.5\times {10}^{10}$$\u20131.2\times {10}^{17}$ | $2.8\times {10}^{10}$$\u20131.5\times {10}^{17}$ | ||

Starink | 143.4–232.9 | $2.6\times {10}^{10}$$\u20131.3\times {10}^{17}$ | $2.9\times {10}^{10}$$\u20131.6\times {10}^{17}$ | ||

Friedman | 156.0–371.9 | $2.5\times {10}^{11}$$\u20137.8\times {10}^{26}$ | $2.7\times {10}^{11}$$\u20133.6\times {10}^{27}$ | ||

40 K/min | FWO | 146.4–232.7 | $5.2\times {10}^{10}$$\u20131.4\times {10}^{17}$ | $5.8\times {10}^{10}$$\u20131.7\times {10}^{17}$ | |

KAS | 143.1–232.6 | $2.9\times {10}^{10}$$\u20131.4\times {10}^{17}$ | $3.3\times {10}^{10}$$\u20131.6\times {10}^{17}$ | ||

Starink | 143.4–232.9 | $3.1\times {10}^{10}$$\u20131.4\times {10}^{17}$ | $3.5\times {10}^{10}$$\u20131.7\times {10}^{17}$ | ||

Friedman | 156.0–371.9 | $2.9\times {10}^{11}$$\u20137.7\times {10}^{26}$ | $3.1\times {10}^{11}$$\u20133.3\times {10}^{26}$ |

Isoconversional Method | ${\mathit{E}}_{\mathit{\alpha}}$ (kJ/mol) | ${\mathit{A}}_{\mathit{\alpha}}$ (min^{−1}) | f (α) |
---|---|---|---|

$\mathit{\alpha}=0.5$ | Equation (3) (Differential) | ||

FWO | 169.80 | $4.5\times {10}^{12}$ | ${\left(1-\alpha \right)}^{2}$ |

KAS | 166.94 | $2.76\times {10}^{12}$ | |

Starink | 167.27 | $2.93\times {10}^{12}$ | |

Friedman | 200.62 | $8.21\times {10}^{14}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xiao, P.; Zhang, J.; Li, H.; Mou, H.; Feng, Z.; Xie, J.
Pyrolysis Kinetics Analysis and Prediction for Carbon Fiber-Reinforced Epoxy Composites. *Polymers* **2023**, *15*, 4533.
https://doi.org/10.3390/polym15234533

**AMA Style**

Xiao P, Zhang J, Li H, Mou H, Feng Z, Xie J.
Pyrolysis Kinetics Analysis and Prediction for Carbon Fiber-Reinforced Epoxy Composites. *Polymers*. 2023; 15(23):4533.
https://doi.org/10.3390/polym15234533

**Chicago/Turabian Style**

Xiao, Pei, Jingyi Zhang, Han Li, Haolei Mou, Zhenyu Feng, and Jiang Xie.
2023. "Pyrolysis Kinetics Analysis and Prediction for Carbon Fiber-Reinforced Epoxy Composites" *Polymers* 15, no. 23: 4533.
https://doi.org/10.3390/polym15234533