A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory
Abstract
:1. Introduction
2. Biopolymers Commonly Used in Geotechnical Engineering
2.1. AGAR
2.2. Gellan Gum
2.3. Guar Gum
2.4. Xanthan Gum
2.5. Chitosan
2.6. Starch
3. Water Retention Properties of Biopolymer-Treated Soils
3.1. Review of Test Methods for the Water Retention Properties of Biopolymer-Treated Soils
3.2. Microscopic Mechanism of Soil Water Retention Improvement by Biopolymers
4. Mechanical Properties of Biopolymer-Treated Soils
4.1. Effects of Types and Ratios of Biopolymers on the Mechanical Properties of Treated Soils
4.2. Effects of Dry and Wet Cycling on the Mechanical Properties of Biopolymer-Treated Soils
4.3. Effects of Curing Age on the Mechanical Properties of Biopolymer-Treated Soils
4.4. Effects of Temperature Changes on the Strength of Biopolymer-Treated Soils
4.5. Analysis of the Dynamic Characteristics of Soils Treated with Biopolymers
5. Permeability and Durability of Biopolymer-Treated Soils
6. Prediction Theory Related to Soil Properties Improved by Biopolymers
7. Biopolymer-Treated Soil Engineering Field Implementation
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, I.; Im, J.; Cho, G.-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Z.; Jiang, T.; Wang, S.; Zhao, J.; Zhao, X. Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Appl. Sci. 2022, 12, 6053. [Google Scholar] [CrossRef]
- Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Lee, S.-W.; Cho, G.-C. Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying. Constr. Build. Mater. 2017, 143, 210–221. [Google Scholar] [CrossRef]
- Arnott, S.; Fulmer, A.; Scott, W.; Dea, I.; Moorhouse, R.; Rees, D. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 1974, 90, 269–284. [Google Scholar] [CrossRef]
- Chang, I.; Cho, G.-C. Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay. Acta Geotech. 2019, 14, 361–375. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.-C. Soil strengthening using thermo-gelation biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Mimura, M.; Kitamura, S.; Urakawa, H.; Kajiwara, K. Structural characteristics of gellan in aqueous solution. Food Hydrocoll. 1993, 7, 373–385. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, L.; Budhu, M. Biopolymer stabilization of mine tailings. J. Geotech. Geoenviron. Eng. 2013, 139, 1802–1807. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Zhang, J.; Jiang, T.; Wang, S.; Zhao, J.; Meng, Z. Water retention characteristics and vegetation growth of biopolymer-treated silt soils. Soil Tillage Res. 2023, 225, 105544. [Google Scholar] [CrossRef]
- Garcıa-Ochoa, F.; Santos, V.; Casas, J.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Seo, S.; Lee, M.; Im, J.; Kwon, Y.-M.; Chung, M.-K.; Cho, G.-C.; Chang, I. Site application of biopolymer-based soil treatment (BPST) for slope surface protection: In-situ wet-spraying method and strengthening effect verification. Constr. Build. Mater. 2021, 307, 124983. [Google Scholar] [CrossRef]
- Hirano, S.; Kitaura, S.; Sasaki, N.; Sakaguchi, H.; Sugiyama, M.; Hashimoto, K.; Tanatani, A. Chitin biodegradation and wound healing in tree bark tissues. J. Environ. Polym. Degrad. 1996, 4, 261–265. [Google Scholar] [CrossRef]
- Linden, J.C.; Stoner, R.J.; Knutson, K.W.; Gardner-Hughes, C.A. Organic disease control elicitors. Agro Food Ind. Hi-Tech 2000, 11, 32–34. [Google Scholar]
- Renault, F.; Sancey, B.; Badot, P.-M.; Crini, G. Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Pan, J.R.; Huang, C.; Chen, S.; Chung, Y.-C. Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 1999, 147, 359–364. [Google Scholar]
- Wang, C.-C.; Juang, L.-C.; Lee, C.-K.; Hsu, T.-C.; Lee, J.-F.; Chao, H.-P. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J. Colloid Interface Sci. 2004, 280, 27–35. [Google Scholar] [CrossRef]
- Smidsrød, O.; Moe, S.; Moe, S.T. Biopolymer Chemistry; Tapir Academic Press: Trondheim, Norway, 2008. [Google Scholar]
- Eliasson, A.-C. Starch in Food: Structure, Function and Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Vishnuvarthanan, M.; Rajeswari, N. Additives for enhancing the drying properties of adhesives for corrugated boards. Alex. Eng. J. 2013, 52, 137–140. [Google Scholar] [CrossRef]
- Smitha, S.; Sachan, A. Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int. J. Geotech. Eng. 2016, 10, 387–400. [Google Scholar] [CrossRef]
- Orts, W.J.; Sojka, R.E.; Glenn, G.M. Biopolymer additives to reduce erosion-induced soil losses during irrigation. Ind. Crops Prod. 2000, 11, 19–29. [Google Scholar] [CrossRef]
- Tran, A.T.P.; Chang, I.; Cho, G.-C. Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands. Geomech. Eng 2019, 17, 475–483. [Google Scholar]
- Berninger, T.; Dietz, N.; González López, Ó. Water-soluble polymers in agriculture: Xanthan gum as eco-friendly alternative to synthetics. Microb. Biotechnol. 2021, 14, 1881–1896. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, A.; Morais, P.V.; Pires, A.C.; Chung, A.P.; Oliveira, P.V. A review on the importance of microbial biopolymers such as xanthan gum to improve soil properties. Appl. Sci. 2020, 11, 170. [Google Scholar] [CrossRef]
- Konrad, J.-M.; Lebeau, M. Capillary-based effective stress formulation for predicting shear strength of unsaturated soils. Can. Geotech. J. 2015, 52, 2067–2076. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, A.; Xu, Y.; Xia, X. Consolidation of unsaturated composite ground reinforced by permeable columns. Comput. Geotech. 2020, 125, 103706. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, G.; Li, X.; Sun, D.A. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range. Acta Geotech. 2020, 15, 265–278. [Google Scholar] [CrossRef]
- Hilf, J.W. An Investigation of Pore-Water Pressure in Compacted Cohesive Soils. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 1956. [Google Scholar]
- Leong, E.-C.; Tripathy, S.; Rahardjo, H. Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique. Geotechnique 2003, 53, 173–182. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, J.D.; Zhang, J.R. Splitting tensile strength and microstructure of xanthan gum-treated loess. Sci. Rep. 2022, 12, 9921. [Google Scholar] [CrossRef]
- Kodikara, J.; Barbour, S.; Fredlund, D. Changes in clay structure and behaviour due to wetting and drying. In Proceedings of the 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge, Australian Geomechanics Society, Hobart, Australia, 15–17 February 1999. [Google Scholar]
- Yu, H.; Tian, H. NMR-based analysis of shear strength of weakly expansive clay in sodium chloride solution. Magn. Reson. Imaging 2019, 58, 6–13. [Google Scholar] [CrossRef]
- Jang, J. A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Adv. Mater. Sci. Eng. 2020, 2020, 1465709. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Cho, G.C. Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Can. Geotech. J. 2016, 2015, 0475. [Google Scholar] [CrossRef]
- Liu, J.; Bai, Y.; Li, D.; Wang, Q.; Qian, W.; Wang, Y.; Kanungo, D.P.; Wei, J. An experimental study on the shear behaviors of polymer-sand composite materials after immersion. Polymers 2018, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Cabalar, A.F.; Canakci, H. Direct shear tests on sand treated with xanthan gum. Proc. Inst. Civ. Eng. Ground Improv. 2011, 164, 57–64. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Awraheem, M.H.; Khalaf, M.M. Geotechnical properties of a low-plasticity clay with biopolymer. J. Mater. Civ. Eng. 2018, 30, 04018170. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Atchaya, S.; Sivasaran, A.; Keerdthe, R. Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bull. Eng. Geol. Environ. 2021, 80, 1157–1167. [Google Scholar] [CrossRef]
- Soldo, A.; Miletić, M. Study on shear strength of xanthan gum-amended soil. Sustainability 2019, 11, 6142. [Google Scholar] [CrossRef]
- Ayeldeen, M.; Negm, A.; El-Sawwaf, M.; Kitazume, M. Enhancing mechanical behaviors of collapsible soil using two biopolymers. J. Rock Mech. Geotech. Eng. 2017, 9, 329–339. [Google Scholar] [CrossRef]
- Dehghan, H.; Tabarsa, A.; Latifi, N.; Bagheri, Y. Use of xanthan and guar gums in soil strengthening. Clean Technol. Environ. Policy 2019, 21, 155–165. [Google Scholar] [CrossRef]
- Rezaeimalek, S.; Huang, J.; Bin-Shafique, S. Performance evaluation for polymer-stabilized soils. Transp. Res. Rec. 2017, 2657, 58–66. [Google Scholar] [CrossRef]
- Rezaeimalek, S.; Nasouri, R.; Huang, J.; Bin-Shafique, S. Curing method and mix design evaluation of a styrene-acrylic based liquid polymer for sand and clay stabilization. J. Mater. Civ. Eng. 2018, 30, 04018200. [Google Scholar] [CrossRef]
- Soldo, A.; Mileti, M.; Auad, M.L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 2020, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Muguda, S.; Booth, S.; Hughes, P.; Augarde, C.; Perlot, C.; Bruno, A.; Gallipoli, D. Mechanical properties of biopolymer-stabilised soil-based construction materials. Géotechnique Lett. 2017, 7, 309–314. [Google Scholar] [CrossRef]
- Ayeldeen, M.K.; Negm, A.M.; El Sawwaf, M.A. Evaluating the physical characteristics of biopolymer/soil mixtures. Arab. J. Geosci. 2016, 9, 371. [Google Scholar] [CrossRef]
- Judge, P.K.; Sundberg, E.; DeGroot, D.J.; Zhang, G. Effects of biopolymers on the liquid limit and undrained shear strength of soft clays. Bull. Eng. Geol. Environ. 2022, 81, 342. [Google Scholar] [CrossRef]
- Bagheri, P.; Gratchev, I.; Rybachuk, M. Effects of Xanthan Gum Biopolymer on Soil Mechanical Properties. Appl. Sci. 2023, 13, 887. [Google Scholar] [CrossRef]
- Bagheri, P.; Gratchev, I.; Son, S.; Rybachuk, M. Durability, Strength, and Erosion Resistance Assessment of Lignin Biopolymer Treated Soil. Polymers 2023, 15, 1556. [Google Scholar] [CrossRef]
- Fatehi, H.; Ong, D.E.; Yu, J.; Chang, I. The effects of particle size distribution and moisture variation on mechanical strength of biopolymer-treated soil. Polymers 2023, 15, 1549. [Google Scholar] [CrossRef]
- Gu, J.; Cai, X.; Chen, C. Study on the impact of a biopolymer-fiber combination on soil reinforcement. Adv. Eng. Technol. Res. 2022, 1, 65. [Google Scholar] [CrossRef]
- Chen, C.; Wu, L.; Perdjon, M.; Huang, X.; Peng, Y. The drying effect on xanthan gum biopolymer treated sandy soil shear strength. Constr. Build. Mater. 2019, 197, 271–279. [Google Scholar] [CrossRef]
- Lemboye, K.; Almajed, A. Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand. Polymers 2023, 15, 1678. [Google Scholar] [CrossRef]
- Cabalar, A.; Wiszniewski, M.; Skutnik, Z. Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand. Soil Mech. Found. Eng. 2017, 54, 356–361. [Google Scholar] [CrossRef]
- Hataf, N.; Ghadir, P.; Ranjbar, N. Investigation of soil stabilization using chitosan biopolymer. J. Clean. Prod. 2018, 170, 1493–1500. [Google Scholar] [CrossRef]
- Verma, A.K.; Prasad, A.; Bonal, N.S. Investigation of the long-term shear strength behavior of municipal solid waste fines stabilized with biopolymer: An experimental study. J. Environ. Chem. Eng. 2023, 11, 109805. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, J.; Cui, Y.; Shi, X.; Song, Z.; Qi, C. Mechanical behavior of polymer stabilized sand under different temperatures. Constr. Build. Mater. 2021, 290, 123237. [Google Scholar] [CrossRef]
- Ni, J.; Li, S.S.; Ma, L.; Geng, X.Y. Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Constr. Build. Mater. 2020, 263, 120039. [Google Scholar] [CrossRef]
- Im, J.; Tran, T.P.A.; Chang, I.I.; Cho, G.C. Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) Tests. Geomech. Eng. 2017, 12, 815–830. [Google Scholar] [CrossRef]
- Ng, C.W.W.; So, P.S.; Lau, S.Y.; Zhou, C.; Coo, J.L.; Ni, J. Influence of biopolymer on gas permeability in compacted clay at different densities and water contents. Eng. Geol. 2020, 272, 105631. [Google Scholar] [CrossRef]
- Ham, S.-M.; Chang, I.; Noh, D.-H.; Kwon, T.-H.; Muhunthan, B. Improvement of surface erosion resistance of sand by microbial biopolymer formation. J. Geotech. Geoenviron. Eng. 2018, 144, 06018004. [Google Scholar] [CrossRef]
- Kumar, S.A.; Sujatha, E.R. An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil. Carbohydr. Polym. 2021, 265, 118083. [Google Scholar] [CrossRef]
- Trambitski, Y.; Kizinievič, O.; Kizinievič, V. The influence of modified biopolymer on mechanical, hygrothermal properties and durability of ecological clay materials. J. Phys. Conf. Ser. 2023, 2423, 012004. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Sun, D.A.; Yu, H.H. A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios. Soil Tillage Res. 2021, 209, 104913. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D.A.; Zhu, Z.; Xu, Y. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range. Acta Geotech. 2019, 14, 417–428. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Zhou, C.; So, P.S.; Chen, X. A water retention model considering biopolymer-soil interactions. J. Hydrol. 2020, 586, 124874. [Google Scholar] [CrossRef]
- Zhang, J.R.; Liu, J.H.; Cheng, Y.; Jiang, T.; Sun, D.A.; Saberian, M. Water-retention behaviour and microscopic analysis of two biopolymer-improved sandy soils. Constr. Build. Mater. 2023, 403, 133202. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A.; Fredlund, M.; Barbour, S. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Can. Geotech. J. 1996, 33, 440–448. [Google Scholar] [CrossRef]
- Alonso, E.E.; Pereira, J.-M.; Vaunat, J.; Olivella, S. A microstructurally based effective stress for unsaturated soils. Géotechnique 2010, 60, 913–925. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D.A.; Zhou, A.; Li, J. Predicting shear strength of unsaturated soils over wide suction range. Int. J. Geomech. 2020, 20, 04019175. [Google Scholar] [CrossRef]
- Zhou, A.; Huang, R.; Sheng, D. Capillary water retention curve and shear strength of unsaturated soils. Can. Geotech. J. 2016, 53, 974–987. [Google Scholar] [CrossRef]
- Lee, J.; Fratta, D.; Akin, I. Shear strength and stiffness behavior of fine-grained soils at different surface hydration conditions. Can. Geotech. J. 2022, 59, 1071–1082. [Google Scholar] [CrossRef]
- Goh, S.; Rahardjo, H.; Leong, E. Modification of triaxial apparatus for permeability measurement of unsaturated soils. Soils Found. 2015, 55, 63–73. [Google Scholar] [CrossRef]
- Wang, H.; Li, T.L.; Fu, Y.K. transient profiling of unsaturated loess permeability curve. J. Hydraul. Eng. 2014, 45, 997–1003. [Google Scholar]
- Cai, G.Q.; Liu, Q.Q.; Yang, Y.; Wang, H.X.; Li, J. Seepage test of sandy loess soil columns under different stress states based on wetting front advance method. J. Hydraul. Eng. 2021, 52, 291–299. [Google Scholar]
- Cai, G.; Zhou, A.; Sheng, D. Permeability function for unsaturated soils with different initial densities. Can. Geotech. J. 2014, 51, 1456–1467. [Google Scholar] [CrossRef]
- Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Ijaz, Z.; Rehman, Z.U. Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technol. Environ. Policy 2022, 24, 2719–2738. [Google Scholar] [CrossRef]
Biopolymers | Action Effect | Advantage | Defect | References |
---|---|---|---|---|
AGAR | Increased strength Porosity reduction Resistance to erosion | Improves strength and durability | Serious pollution | [4,6,7,8] |
Gellan gum | Increased strength Improved water retention | Better water retention | Needs a high-temperature environment | [5,9] |
Guar gum | Blocking pores Dust reduction Increased strength Grouting | High viscosity Strong hydration | Higher cost | [10,11] |
Xanthan gum | Increased strength Improved water retention | Low cost | - | [12,13] |
Chitosan | Reduced heavy metals | Reduced water pollution | High cost | [14,15,16,17,18] |
Starch | Increased strength Resistance to erosion | Easy to obtain | High cost | [19,20,21,22,23] |
Suction | Suction Control Method | Specific Suction Range | Specimens’ Size/mm | Biopolymer Ratio Range (mbp/ms) |
---|---|---|---|---|
Low suction | Pressure plate | 0–1500 kPa | d = 61.8, h = 20 | 0.5~3% |
High suction | WP4C | 0–300 MPa | d = 33.0, h = 7 | 0.5~2% |
High suction | Filter paper | 0.2–100 MPa | d = 61.8, h = 20 | 0.5~3% |
High suction | Steam balance | 3–370 MPa | d = 61.8, h = 20 | 0.5~2% |
Saturated Salt Solution | Relative Humidity/% | Total Suction/MPa |
---|---|---|
LiBr | 6.6 | 367.54 |
LiCl·H2O | 12.0 | 286.70 |
CH3COOK | 23.1 | 198.14 |
MgCl2·6H2O | 33.1 | 149.51 |
K2CO3 | 43.2 | 113.50 |
NaBr | 59.1 | 71.12 |
KI | 69.9 | 48.42 |
NaCl | 75.5 | 38.00 |
KCL | 85.1 | 21.82 |
K2SO4 | 97.6 | 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, J. A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory. Polymers 2023, 15, 4431. https://doi.org/10.3390/polym15224431
Zhang J, Liu J. A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory. Polymers. 2023; 15(22):4431. https://doi.org/10.3390/polym15224431
Chicago/Turabian StyleZhang, Junran, and Jiahao Liu. 2023. "A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory" Polymers 15, no. 22: 4431. https://doi.org/10.3390/polym15224431
APA StyleZhang, J., & Liu, J. (2023). A Review on Soils Treated with Biopolymers Based on Unsaturated Soil Theory. Polymers, 15(22), 4431. https://doi.org/10.3390/polym15224431